Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T19:27:26.625Z Has data issue: false hasContentIssue false

Methodological review: Socio-cultural analysis criteria for BIM modeling and material passport tracking of agriwaste as a building construction raw material

Published online by Cambridge University Press:  01 September 2020

Cecilia A. Wandiga*
Affiliation:
Centre for Science & Technology Innovations, P.O. Box 42792, Nairobi00100, Kenya
*
Address all correspondence to Cecilia A. Wandiga at cecilia.wandiga@csti.or.ke
Get access

Abstract

Lack of data on available agriwaste by type of source, local variations in agricultural consumption, and the uncertain feasibility of industrial scaling, all contribute to the challenges of developing commercially viable agriwaste-to-resource building products. Materials Passports linked to Building Management Information systems are tools that can improve regional planning efforts and the coordination of sustainable supply chains focused on new product development and product stewardship.

Globally, an estimated 3.5 kg per capita of daily agricultural waste is transferred to municipal landfills. Stated differently, 7.8 billion people generate 26.25 billion kg of daily agriwaste. Numerous studies established linkages between leachates from solid waste landfills, bioaccumulation of toxic chemicals, and greenhouse gas emissions that are a leading cause of climate change. Furthermore, raw material scarcity threatens to constrain economic growth and productivity. Sustainable circular economy practices focus on increased efficiency and a decoupling of wasted natural resource consumption from economic growth. Academic and industry researchers are focused on developing circular economy solutions that increase resource efficiency while decoupling wasted natural resource consumption from economic growth. Human acceptance and adaptation of technology are ideologically, culturally, and socio-technically dependent. Waste banana peels are used as an analytical scenario of how BIM modeling can improve the production of localized, affordable, and culturally appropriate building materials. Ideological and cultural norms are a precursor for socio-technical acceptance. Building material selection is examined from the perspective of complex factors creating uncertain economic valuations, and socio-cultural variations in the definition of waste. The objective of the research is to open multidisciplinary examination of the practices and choices that determine affordably safe building materials.

Type
Perspective
Copyright
Copyright © The Author, 2020, published on behalf of Materials Research Society by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Varey, R.: Pragmatism, new science and sustainability. Adv. Consum. Res. 43, 212217 (2015). Available at: http://www.acrwebsite.org/volumes/1019941/volumes/v43/NA-43http://www.copyright.com/ (accessed May 31, 2020).Google Scholar
Ngan, S.L., How, B.S., Teng, S.Y., Promentilla, M.A.B., Yatim, P., Er, A.C., and Lam, H.L.: Prioritization of sustainability indicators for promoting the circular economy: The case of developing countries. Renew. Sustain. Energy Rev. 111, 314331 (2019). doi:10.1016/j.rser.2019.05.001.CrossRefGoogle Scholar
Turner, K., Badura, T., and Ferrini, S.: Natural capital accounting perspectives: A pragmatic way forward. Ecosyst. Heal. Sustain. 5, 237241 (2019). doi:10.1080/20964129.2019.1682470.CrossRefGoogle Scholar
Schröder, P., Bengtsson, M., Cohen, M., Dewick, P., Hoffstetter, J., and Sarkis, J.: Degrowth within – Aligning circular economy and strong sustainability narratives. Resour. Conserv. Recycl. 146, 190191 (2019). doi:10.1016/j.resconrec.2019.03.038.CrossRefGoogle Scholar
Jørgensen, M.S. and Remmen, A.: A methodological approach to development of circular economy options in businesses. Procedia CIRP 69, 816821 (2018). doi:10.1016/j.procir.2017.12.002.CrossRefGoogle Scholar
Kovacic, I., Honic, M., and Rechberger, H.: Proof of concept for a BIM-based material passport. In Advances in Informatics and Computing in Civil and Construction Engineering. H. T. Mutis I., Ed. (Springer, Cham, 2019); pp. 741–747. doi:10.1007/978-3-030-00220-6_89CrossRefGoogle Scholar
Akadiri, P.O., Chinyio, E.A., and Olomolaiye, P.O.: Design of a sustainable building: A conceptual framework for implementing sustainability in the building sector. Buildings 2, 126152 (2012). doi:10.3390/buildings2020126.CrossRefGoogle Scholar
Andrews, C.: 5 Myths and 5 realities of BIM-GIS integration from Esri. ArcGIS Blog (2019). Available at: https://www.esri.com/arcgis-blog/products/arcgis-pro/3d-gis/5-myths-5-realities-bim-gis-integration/Google Scholar
Irizarry, J., Karan, E.P., and Jalaei, F.: Integrating BIM and GIS to improve the visual monitoring of construction supply chain management. Autom. Constr. 31, 241254 (2013). doi:10.1016/j.autcon.2012.12.005.CrossRefGoogle Scholar
Song, Y., Wang, X., Tan, Y., Wu, P., Sutrisna, M., Cheng, J.C.P., and Hampson, K.: Trends and opportunities of BIM-GIS integration in the architecture, engineering and construction industry: A review from a spatio-temporal statistical perspective. ISPRS Int. J. Geo-Inf. 6, 397 (2017). doi:10.3390/ijgi6120397.CrossRefGoogle Scholar
Bolshakova, V., Guerriero, A., and Halin, G.: Identifying stakeholders’ roles and relevant project documents for 4D-based collaborative decision making. Front. Eng. Manag. 7, 104118 (2020). doi:10.1007/s42524-019-0041-4.CrossRefGoogle Scholar
Al-Soudany, K., Al-Gharbawi, A., and Al-Noori, M.: Improvement of clayey soil characteristics by using activated carbon. In MATEC Web of Conferences, vol. 162, (2018); p. 01009. doi:10.1051/matecconf/201816201009.CrossRefGoogle Scholar
Jaishankar, M., Mathew, B.B., Shah, M.S., Murthy, T.P.K., and Gowda, K.R.S.: Biosorption of few heavy metal ions using agricultural wastes. J. Environ. Pollut. Hum. Heal. 2, 16 (2014). doi:10.12691/JEPHH-2-1-1.Google Scholar
Mohamad, N., Abdul Samad, A.A., Lakhiar, M.T., Othuman Mydin, M.A., Jusoh, S., Sofia, A., and Efendi, S.A.: Effects of incorporating banana skin powder (BSP) and palm oil fuel ash (POFA) on mechanical properties of lightweight foamed concrete. Int. J. Integr. Eng. 10 (2018). Available at: https://publisher.uthm.edu.my/ojs/index.php/ijie/article/view/3104 (accessed January 20, 2020).CrossRefGoogle Scholar
Mopoung, S.: Occurrence of carbon nanotube from banana peel activated carbon mixed with mineral oil. Int. J. Phys. Sci. 6, 17891792 (2011). doi:10.5897/IJPS10.489.Google Scholar
Li, Y., Li, W., Tang, S., Darwish, W., Hu, Y., and Chen, W.: Automatic indoor as-built building information models generation by using low-cost RGB-D sensors. Sensors 20, 293 (2020). doi:10.3390/s20010293.CrossRefGoogle ScholarPubMed
Swaroop, S.D. and Prince Raj, A.: Experiment on concrete containing with activated carbon and Nano-fly ash, nano metakaolin. Int. J. Innov. Technol. Explor. Eng. 8, 10301033 (2019). doi:10.35940/ijitee.F1212.0486S419.Google Scholar
Priefer, C., Jörissen, J., and Frör, O.: Pathways to shape the bioeconomy. Resources 6, 10 (2017). doi:10.3390/resources6010010.CrossRefGoogle Scholar
The World Bank: What a Waste: An Updated Look into the Future of Solid Waste Management, 2018.Google Scholar
Zuin, V.G. and Ramin, L.Z.: Green and sustainable separation of natural products from agro-industrial waste: Challenges, potentialities, and perspectives on emerging approaches. Top. Curr. Chem. 376, 3 (2018). doi:10.1007/s41061-017-0182-z.CrossRefGoogle ScholarPubMed
Majid Aminzare, A.A., Hashemi, M., Ansarian, E., Bimakr, M., Azar, H.H., Mehrasbi, M.R., Daneshamooz, S., Raeisi, M., and Jannat, B.: Using natural antioxidants in meat and meat products as preservatives: A review. Adv. Anim. Vet. Sci. 7, 417426 (2019). Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3439618 (accessed May 31, 2020).Google Scholar
Mallemo, R., Ogwok, P., Makokha, V., Mugampoza, E., and Ugen, A.: Effects of banana peel-ash-extract on cooking time and acceptability of hard-to-cook beans (Phaseolus vulgaris l.). Int. J. Trop. Agric. Food Syst. 3 (2010). doi:10.4314/ijotafs.v3i1.50014.Google Scholar
Lumu, R., Katongole, C.B., Nambi-Kasozi, J., Bareeba, F., Presto, M., Ivarsson, E., and Lindberg, J.E.: Indigenous knowledge on the nutritional quality of urban and peri-urban livestock feed resources in Kampala, Uganda. Trop. Anim. Health Prod. 45, 15711578 (2013). doi:10.1007/s11250-013-0401-8.CrossRefGoogle Scholar
Amini Khoozani, A., Birch, J., and Bekhit, A.E.D.A.: Production, application and health effects of banana pulp and peel flour in the food industry. J. Food Sci. Technol. 56, 548559 (2019). doi:10.1007/s13197-018-03562-z.CrossRefGoogle ScholarPubMed
Gomes, S., Vieira, B., Barbosa, C., and Pinheiro, R.: Evaluation of mature banana peel flour on physical, chemical, and texture properties of a gluten-free Rissol. J. Food Process. Preserv. (2020). doi:10.1111/jfpp.14441.CrossRefGoogle Scholar
Padam, B.S., Tin, H.S., Chye, F.Y., and Abdullah, M.I.: Banana by-products: An under-utilized renewable food biomass with great potential. J. Food Sci. Technol. 51, 35273545 (2014). doi:10.1007/s13197-012-0861-2.CrossRefGoogle Scholar
Madurwar, M.V., Ralegaonkar, R.V., and Mandavgane, S.A.: Application of agro-waste for sustainable construction materials: A review. Constr. Build. Mater. 38, 872878 (2013). doi:10.1016/j.conbuildmat.2012.09.011.CrossRefGoogle Scholar
Madhusudanan, S. and Amirtham, L.R.: Alternative building material using industrial and agricultural wastes. Key Eng. Mater. 650, 112 (2015). doi:10.4028/www.scientific.net/KEM.650.1.CrossRefGoogle Scholar
Maraveas, C.: Production of sustainable construction materials using agro-wastes. Materials (Basel) 13, 262 (2020). doi:10.3390/ma13020262.CrossRefGoogle ScholarPubMed
Klein, J.T.: Evaluation of interdisciplinary and transdisciplinary research. A literature review. Am. J. Prev. Med. 35, S116S123 (2008). doi:10.1016/j.amepre.2008.05.010.CrossRefGoogle ScholarPubMed
Lawrence, R.J.: Deciphering interdisciplinary and transdisciplinary contributions. Transdiscipl. J. Eng. Sci. 1 (2010). doi:10.22545/2010/0003.CrossRefGoogle Scholar
Gontard, N., Sonesson, U., Birkved, M., Majone, M., Bolzonella, D., Celli, A., Angellier-Coussy, H., Jang, G.-W., Verniquet, A., Broeze, J., Schaer, B., Batista, A.P., and Sebok, A.: A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Crit. Rev. Environ. Sci. Technol. 48, 614654 (2018). doi:10.1080/10643389.2018.1471957.CrossRefGoogle Scholar
Centre for Science and Technology Innovation: From excess bananas to yummy crisps #LBIIW2019 [YouTube video], 2019. Available at: https://www.youtube.com/watch?v=_4vrtmc63Xw.Google Scholar
Yoneda, Y.: Stop Throwing Away Banana Peels - Eat Them Instead. Available at: https://inhabitat.com/stop-throwing-away-banana-peels-eat-them-instead/ (accessed January 20, 2020).Google Scholar
Barnard, A.V.: Freegans: Diving into the Wealth of Food Waste in America (University of Minnesota Press, 2016).CrossRefGoogle Scholar
IOT Council: The Material Passport is a concept supervised and governed by the Madaster Foundation, 2017. Available at: https://www.theinternetofthings.eu/material-passport-concept-supervised-and-governed-madaster-foundation (accessed May 31, 2020).Google Scholar
Honic, M., Kovacic, I., and Rechberger, H.: Concept for a BIM-based Material Passport for buildings. In IOP Conference Series: Earth and Environmental Science, vol. 225 (2019). doi:10.1088/1755-1315/225/1/012073.CrossRefGoogle Scholar
Göpel, M.: Why the mainstream economic paradigm cannot inform sustainability transformations. In The Great Mindshift. The Anthropocene: Politik—Economics—Society—Science, vol. 2. (Springer, Cham, 2016); pp. 53117. Available from: https://www.jstor.org/stable/10.5749/j.ctt1b7x573CrossRefGoogle Scholar
Cooper, N., Brady, E., Steen, H., and Bryce, R.: Aesthetic and spiritual values of ecosystems: Recognising the ontological and axiological plurality of cultural ecosystem ‘services’. Ecosyst. Serv. 21, 218229 (2016). doi:10.1016/j.ecoser.2016.07.014.CrossRefGoogle Scholar
Scheer, D., Benighaus, C., Benighaus, L., Renn, O., Gold, S., Röder, B., and Böl, G.-F.: The distinction between risk and hazard: Understanding and use in stakeholder communication. Risk Anal. 34, 1270–85 (2014). doi:10.1111/risa.12169.CrossRefGoogle ScholarPubMed
Lavakare, A.: GIS & risk assessment. Geospatial World (2010). Available at: https://www.geospatialworld.net/article/gis-risk-assessment/ (accessed June 1, 2020).Google Scholar
Catani, F., Casagli, N., Ermini, L., Righini, G., and Menduni, G.: Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2, 329342 (2005). doi:10.1007/s10346-005-0021-0.CrossRefGoogle Scholar
Anbalagan, R. and Singh, B.: Landslide hazard and risk assessment mapping of mountainous terrains – A case study from Kumaun Himalaya, India. Eng. Geol. 43, 237246 (1996). doi:10.1016/S0013-7952(96)00033-6.CrossRefGoogle Scholar
Adams, R.M.: Cultural and sociotechnical values. In Engineering as a Social Enterprise. H. E. Sladovich, Ed. (National Academies Press, Washington, D.C., 1991); pp. 2638.Google Scholar
Korhonen, J., Nuur, C., Feldmann, A., and Birkie, S.E.: Circular economy as an essentially contested concept. J. Clean. Prod. 175, 544552 (2018). doi:10.1016/J.JCLEPRO.2017.12.111.CrossRefGoogle Scholar
The SASB Foundation: SASB Materiality Map®, 2018. Available at: https://materiality.sasb.org/ (accessed June 1, 2020).Google Scholar
Sustainability Accounting Standards Board®: Sustainability Accounting Standard Non-Renewable Resources Sector #NR0401 Construction Materials, 2014. Available at: https://www.sasb.org/wp-content/uploads/2014/06/NR0401_ProvisionalStandard_ConstructionMaterials.pdf (accessed June 1, 2020).Google Scholar
Mosa, Z.M. and Khalil, A.F.: The effect of banana peels supplemented diet on acute liver failure rats. Ann. Agric. Sci. 60, 373379 (2015). doi:10.1016/j.aoas.2015.11.003.CrossRefGoogle Scholar
Sobel, J.: Manufacturers struggle to turn data into insight. Forbes:Techonomy (2014).Google Scholar
Jonassen, D.H.: Designing for decision making. Educ. Technol. Res. Dev. 60, 341359 (2012). doi:10.1007/s11423-011-9230-5.CrossRefGoogle Scholar
Egeghy, P.P., Judson, R., Gangwal, S., Mosher, S., Smith, D., Vail, J., and Cohen Huba, E.A.: The exposure data landscape for manufactured chemicals. Sci. Total Environ. 414, 159–66 (2012). doi:10.1016/j.scitotenv.2011.10.046.CrossRefGoogle ScholarPubMed
McPartland, J.: Exposing our ignorance: EPA study reveals barren exposure data landscape. EDF Health Blog 16 (2012). Available at: http://blogs.edf.org/health/2012/03/16/exposing-our-ignorance-epa-study-reveals-barren-exposure-data-landscape/Google Scholar
D'Souza, C. and Taghian, M.: Integrating precautionary principle approach in sustainable decision-making process: A proposal for a conceptual framework. J. Macromarketing 30, 192199 (2010). doi:10.1177/0276146710361933.CrossRefGoogle Scholar
Løkke, S.: The precautionary principle and chemicals regulation: Past achievements and future possibilities. Environ. Sci. Pollut. Res. Int. 13, 342–9 (2006). http://dx.doi.org.library.capella.edu/10.1065/espr2006.06.312.CrossRefGoogle ScholarPubMed
Todt, O. and Luján, J.L.: Analyzing precautionary regulation: Do precaution, science, and innovation go together? Risk Anal. 34, 2163–73 (2014). doi:10.1111/risa.12246.CrossRefGoogle ScholarPubMed
Actualitix: Africa: Banana - Producing countries (Tons), 2016. Available at: https://en.actualitix.com/country/afri/africa-banana-production.php (accessed January 19, 2020).Google Scholar
Knoema: Kenya Bananas production, 1961–2019. World Atlas (2017). Available at: https://knoema.com/atlas/Kenya/topics/Agriculture/Crops-Production-Quantity-tonnes/Bananas-production (accessed January 20, 2020).Google Scholar
Secretariat of the Basel Convention: Basel Convention, 1992. Available at: http://www.basel.int/TheConvention/Overview/TextoftheConvention/tabid/1275/Default.aspx (accessed January 20, 2020).Google Scholar
Cornell, S. and Kalt, J.P.: Joint occasional papers on native affairs sovereignty and nation-building: The development challenge in Indian country today. Jt. Occas. Pap. Nativ. Aff. Repr. from Am. Indian Cult. Res. J. 03, 133 (2003). Available at: http://nnidatabase.org/db/text/sovereignty-and-nation-building-development-challenge-indian-country-today.Google Scholar
Mwanza, B.G., Mbohwa, C., and Telukdarie, A.: Levers influencing sustainable waste recovery at households level: A review. Procedia Manuf. 21, 615622 (2018). doi:10.1016/j.promfg.2018.02.163.CrossRefGoogle Scholar
Glaser, J.A.: Green chemistry metrics. Clean Technol. Environ. Policy 11, 371374 (2009). doi:10.1007/s10098-009-0264-x.CrossRefGoogle Scholar
Weitz, K.A., Thorneloe, S.A., Nishtala, S.R., Yarkosky, S., and Zannes, M.: The impact of municipal solid waste management on greenhouse gas emissions in the United States. J. Air Waste Manag. Assoc. 52, 10001011 (2002). doi:10.1080/10473289.2002.10470843.CrossRefGoogle ScholarPubMed
Jokela, J.P.Y., Kettunen, R.H., and Rintala, J.A.: Methane and leachate pollutant emission potential from various fractions of municipal solid waste (MSW): Effects of source separation and aerobic treatment. Waste Manag. Res. 20, 424433 (2002). doi:10.1177/0734242X0202000506.CrossRefGoogle ScholarPubMed
Aljaradin, M.: Environmental impact of municipal solid waste landfills in semi-arid climates – Case study – Jordan. Open Waste Manag. J. 5, 2839 (2012). doi:10.2174/1876400201205010028.CrossRefGoogle Scholar
Armitage, J.M., Quinn, C.L., and Wania, F.: Global climate change and contaminants – An overview of opportunities and priorities for modelling the potential implications for long-term human exposure to organic compounds in the Arctic. J. Environ. Monitor. 13, 15321546 (2011). The Royal Society of Chemistry, doi:10.1039/c1em10131e.CrossRefGoogle Scholar
Oizom: 9 reasons why odour monitoring is crucial for landfills, 2019.Google Scholar
Sensoneo Smart Waste Management: Smart waste management using IOT – real benefits of Sensoneo, 2018.Google Scholar
Mabunga, Z. and Magwili, G.: Greenhouse gas emissions and groundwater leachate leakage monitoring of sanitary landfill. In 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2019. doi:10.1109/HNICEM48295.2019.9072872.CrossRefGoogle Scholar
Xu, C.-Y., Xu, X.-L., Zhang, Y.-J., Wang, Q.-Z., and Jing, J.-H.: Municipal landfill leachate real-time processing measurement and control method. In 2018 3rd International Conference on Electrical, Control and Automation Engineering (ECAE 2018), 2018; p. 5. Available at: http://www.dpi-proceedings.com/index.php/dtetr/article/view/27707 (accessed July 13, 2020).Google Scholar
Ansoff, H.I.: Managing strategic surprise by response to weak signals. Calif. Manag. Rev. Winter 18, 2133 (1975). doi:10.2307/41164635.CrossRefGoogle Scholar
Ansoff, H.I.: Strategic issue management. Strateg. Manag. J. 1, 131148 (1980). doi:10.1002/smj.4250010204.CrossRefGoogle Scholar
Ansoff, H.I. and Sullivan, P.A.: Optimizing profitability in turbulent environments: A formula for strategic success. Long Range Plann. 26, 1123 (1993). doi:10.1016/0024-6301(93)90073-o.CrossRefGoogle Scholar
Kipley, D.H. and Lewis, A.O.: The scalability of H. Igor Ansoff's strategic management principles for small and medium sized firms. J. Manag. Res. 1 (2008). doi:10.5296/jmr.v1i1.33.CrossRefGoogle Scholar
Kipley, D., Lewis, A.O., and Jeng, J.-L.: Extending Ansoff's strategic diagnosis model: Defining the optimal strategic performance positioning matrix. SAGE Open 2 (2012). doi:10.1177/2158244011435135.CrossRefGoogle Scholar
Ramsden, J.J.: The business environment. In Applied Nanotechnology: The Conversion of Research Results to Products, 3rd ed. (William Andrew, Oxford, UK, 2018); pp. 161185. doi: 10.1016/b978-0-12-813343-9.00015-9CrossRefGoogle Scholar
Rackley, S.A.: Introduction. In Carbon Capture and Storage, 2nd ed. (Butterworth-Heinemann, Oxford, UK, 2017); pp. 321. doi:10.1016/B978-0-12-812041-5.00001-5CrossRefGoogle Scholar
Dishaw, M.T. and Strong, D.M.: Extending the technology acceptance model with task-technology fit constructs. Inf. Manag. 36, 921 (1999). doi:10.1016/S0378-7206(98)00101-3.CrossRefGoogle Scholar
Hussain, K., He, Z., Ahmad, N., Iqbal, M., and Taskheer Mumtaz, S.M.: Green, lean, Six Sigma barriers at a glance: A case from the construction sector of Pakistan. Build. Environ. 161 (2019). doi:10.1016/j.buildenv.2019.106225.CrossRefGoogle Scholar
Ben Ruben, R., Vinodh, S., and Asokan, P.: Lean Six Sigma with environmental focus: Review and framework. Int. J. Adv. Manuf. Technol. 94, 40234037 (2018). doi:10.1007/s00170-017-1148-6.CrossRefGoogle Scholar
U.S. EPA: Environmental Professional's Guide to Lean and Six Sigma: Executive Summary, 2019. Available at: https://www.epa.gov/sustainability/environmental-professionals-guide-lean-and-six-sigma-executive-summary.Google Scholar
Komal, U.K., Lila, M.K., and Singh, I.: PLA/banana fiber based sustainable biocomposites: A manufacturing perspective. Compos. B Eng. 180 (2020). doi:10.1016/j.compositesb.2019.107535.CrossRefGoogle Scholar
Ng, W.Y. and Chau, C.K.: New life of the building materials-recycle, reuse and recovery. Energy Procedia 75, 28842891 (2015). doi:10.1016/j.egypro.2015.07.581.CrossRefGoogle Scholar
Karimpour, M., Belusko, M., Xing, K., Boland, J., and Bruno, F.: Impact of climate change on the design of energy efficient residential building envelopes. Energy Build. 87, 142154 (2015). doi:10.1016/j.enbuild.2014.10.064.CrossRefGoogle Scholar
Pavlů, T., Kočí, V., and Hájek, P.: Environmental assessment of two use cycles of recycled aggregate concrete. Sustainability 11, 122 (2019). doi:10.3390/su11216185.CrossRefGoogle Scholar
Anwar, J., Shafique, U., Waheed-uz-Zaman, Salman M., Dar, A., and Anwar, S.: Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresour. Technol. 101, 17521755 (2010). doi:10.1016/j.biortech.2009.10.021.CrossRefGoogle ScholarPubMed
Zeiss, G.: ESRI and Autodesk partnership for BIM and geospatial interoperability: One year later. Between the Poles (2018).Google Scholar
Autodesk BioNano Research: Molecular Design Toolkit intro [YouTube video], 2016.Google Scholar
Chemistry World: Digital synthesis design [YouTube video], 2016.Google Scholar
Autodesk: Autodesk Material Library — 3ds Max Design 2011 new features [YouTube video], 2010.Google Scholar
Autodesk: Green Building Studio, 2013. Available at: https://gbs.autodesk.com/GBS/ (accessed January 20, 2020).Google Scholar
Ajayi, S.O., Oyedele, L.O., Ceranic, B., Gallanagh, M., and Kadiri, K.O.: Life cycle environmental performance of material specification: A BIM-enhanced comparative assessment. Int. J. Sustain. Build. Technol. Urban Dev. 6, 1424 (2015). doi:10.1080/2093761X.2015.1006708.CrossRefGoogle Scholar
DigitalSteamWorkshop: Autodesk Digital STEAM workshop trailer [YouTube video], 2011.Google Scholar
Open Systems Lab: Wikihouse - About, 2019. Available at: https://www.wikihouse.cc/Performance.Google Scholar
Hardiman, J.: Wikihouse library [YouTube video], 2014.Google Scholar
Jakubowski, M.: Open Building Institute - Introductory [YouTube video], 2016.Google Scholar
Open Source Ecology: Seed Eco-Home features, 2019. Available at: https://wiki.opensourceecology.org/wiki/Seed_Eco-Home_Features.Google Scholar
Davis, R. and John, P.: Application of Taguchi-based design of experiments for industrial chemical processes. In Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes (InTechOpen Limited, London, UK, 2018). doi:10.5772/intechopen.69501CrossRefGoogle Scholar
Kurian, G., ed.: Theory of constraints. The AMA Dictionary of Business and Management. (AMACOM, Publishing Division of the American Management Association, New York, NY, 2013). Available at: http://search.credoreference.com.library.capella.edu/content/entry/amadictbm/theory_of_constraints/0?searchId=03db93f4-cfaa-11e5-827e-0a80f32943a1&result=7 (accessed February 10, 2016).Google Scholar
Silva, M.B., Carneiro, L.M., Silva, J.P.A., dos Santos Oliveira, I., Filho, H.J.I., and de Oliveira Almeida, C.R.: An application of the Taguchi method (robust design) to environmental engineering: Evaluating advanced oxidative processes in polyester-resin wastewater treatment. Am. J. Anal. Chem. 5, 828837 (2014). doi:10.4236/ajac.2014.513092.CrossRefGoogle Scholar
Wysk, R.A., Niebel, B.W., Cohen, P.H., and Simpson, T.W.: 32.3 Taguchi's Robust Design. In Manufacturing Processes: Integrated Product and Process Design (McGraw Hill, New York, NY, 2000); p. 9. Available from: https://www.mne.psu.edu/simpson/courses/ie466/ie466.robust.handout.PDFGoogle Scholar
Besseris, G.J.: Applying the DOE toolkit on a lean-and-green Six Sigma maritime-operation improvement project. Int. J. Lean Six Sigma 2, 270284 (2011). doi:10.1108/20401461111157213.CrossRefGoogle Scholar
Koh, S.C.L., Gunasekaran, A., Morris, J., Obayi, R., and Ebrahimi, S.M.: Conceptualizing a circular framework of supply chain resource sustainability. Int. J. Oper. Prod. Manag. 37, 15201540 (2017). doi:10.1108/IJOPM-02-2016-0078.CrossRefGoogle Scholar
Risk Engineering: The ISO 31000 standard risk management: Principles and guidelines, 2017. Available at: https://risk-engineering.org/ISO-31000-risk-management/.Google Scholar
Noyes, P.D., McElwee, M.K., Miller, H.D., Clark, B.W., Van Tiem, L.A., Walcott, K.C., Erwin, K.N., and Levin, E.D.: The toxicology of climate change: Environmental contaminants in a warming world. Environ. Int. 35, 971986 (2009). Elsevier Ltd, doi:10.1016/j.envint.2009.02.006.CrossRefGoogle Scholar
Assmuth, T. and Kalevi, K.: Concentrations and toxicological significance of trace organic compounds in municipal solid waste landfill gas. Chemosphere 24, 12071216 (1992). doi:10.1016/0045-6535(92)90047-U.CrossRefGoogle Scholar
Bakare, A.A., Pandey, A.K., Bajpayee, M., Bhargav, D., Chowdhuri, D.K., Singh, K.P., Murthy, R.C., and Dhawan, A.: DNA damage induced in human peripheral blood lymphocytes by industrial solid waste and municipal sludge leachates. Environ. Mol. Mutagen. 48, 3037 (2007). doi:10.1002/em.20272.CrossRefGoogle ScholarPubMed
Bakare, A.A., Alimba, C.G., and Alabi, O.A.: Genotoxicity and mutagenicity of solid waste leachates: A review. African J. Biotechnol. 12, 42064220 (2013). doi:10.5897/ajb2013.12014.Google Scholar
BAMB 2020: Materials Passports Platform Prototype, 2016. Available at: https://www.bamb2020.eu/topics/materials-passports/materials-passports-platform-prototype/ (accessed January 20, 2020).Google Scholar
Interreg Europe: RETRACE – A systemic approach for regions transitioning towards a Circular Economy, 2020. Available at: https://www.interregeurope.eu/retrace/ (accessed May 31, 2020).Google Scholar
Ferronato, N. and Torretta, V.: Waste mismanagement in developing countries: A review of global issues. Int. J. Environ. Res. Public Health 16, 1060 (2019). doi:10.3390/ijerph16061060.CrossRefGoogle ScholarPubMed
Walport, S.M. and Boyd, I. From waste to resource productivity: Evidence and case studies, 2017. Available at: https://www.gov.uk/government/publications/from-waste-to-resource-productivity (Accessed: May 9, 2020).Google Scholar
Andrade, L.R.B., Amaral, F.G., and Waissmann, W.: Proposals for risk management in environments with activities involving nanomaterials. Vigilância Sanitária em Debate Soc. Ciência Tecnol. 1, 2537 (2013). doi:10.3395/vd.v1i4.63en.Google Scholar
Luscuere, L.M.: Materials Passports: Optimising value recovery from materials. Proc. Inst. Civ. Eng. Waste Resour. Manag. 170, 2528 (2017). doi:10.1680/jwarm.16.00016.Google Scholar
Schraven, D., Bukvić, U., Di Maio, F., and Hertogh, M.: Circular transition: Changes and responsibilities in the Dutch stony material supply chain. Resour. Conserv. Recycl. 150, 104359 (2019). doi:10.1016/j.resconrec.2019.05.035.CrossRefGoogle Scholar
Adams, K. T., Osmani, M., Thorpe, T., and Thornback, J.: Circular economy in construction: Current awareness, challenges and enablers. Proc. Inst. Civil Eng. Waste Resour. Manag. 170, 15–24. doi:10.1680/jwarm.16.00011.CrossRefGoogle Scholar
Caballero, E. and Soto, C.: "Valorization of Agro-Industrial Waste into Bioactive Compounds: Techno-Economic Considerations," In: Biorefinery: Integrated Sustainable Processes for Biomass Conversion to Biomaterials, Biofuels, and Fertilizers J.-R. Bastidas-Oyanedel and J. E. Schmidt, Eds. (Springer, Cham, Switzerland, 2019); p. 235252. doi:10.1007/978-3-030-10961-5_10Google Scholar
Reißmann, D., Thrän, D., and Bezama, A.: Techno-economic and environmental suitability criteria of hydrothermal processes for treating biogenic residues: A SWOT analysis approach. J. Clean. Prod. 200, 293304 (2018). doi:10.1016/j.jclepro.2018.07.280.CrossRefGoogle Scholar
Shahzad, K., Narodoslawsky, M., Sagir, M., Ali, N., Ali, S., Rashid, M.I., Ismail, I.M.I., and Koller, M.: Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production. Waste Manag. 67, 7385 (2017). doi:10.1016/j.wasman.2017.05.047.CrossRefGoogle ScholarPubMed
Mahato, N., Sinha, M., Sharma, K., Koteswararao, R., and Cho, M.H.: Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods 8, 523 (2019). doi:10.3390/foods8110523.CrossRefGoogle ScholarPubMed
Mohan, T., Sheik Farid, N.S., Swathi, K.V., Sowmya, A., and Ramani, K.: Sustainable biological system for the removal of high strength ammoniacal nitrogen and organic pollutants in poultry waste processing industrial effluent. J. Air Waste Manage. Assoc. (2020). doi:10.1080/10962247.2020.1731013.CrossRefGoogle ScholarPubMed
National Research Council: Industrialization of Biology: A Roadmap to Accelerate the Advanced Manufacturing of Chemicals. (National Academies Press, Washington, D.C., 2015).Google Scholar
Røkke, G., Korvald, E., Pahr, J., Øyås, O., and Lale, R.: BioBrick assembly standards and techniques and associated software tools. Methods Mol. Biol. 1116, 124 (2014). doi:10.1007/978-1-62703-764-8_1.CrossRefGoogle ScholarPubMed
The BioBricks Foundation: Open Material Transfer Agreement (OpenMTA). Available at: https://biobricks.org/openmta/ (accessed June 1, 2020).Google Scholar
The BioBricks Foundation: BBFRFC15 - OpenWetWare, 2008. Available at: https://openwetware.org/wiki/The_BioBricks_Foundation:BBFRFC15 (accessed June 1, 2020).Google Scholar
BIO-TIC: Overcoming hurdles for innovation in industrial biotechnology in Europe (Berlin, Germany, 2014). Available at: http://www.industrialbiotech-europe.eu/new/wp-content/uploads/2015/02/Biosurfactants-workshop-report-website.pdf (accessed September 2, 2015).Google Scholar