Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T17:06:32.217Z Has data issue: false hasContentIssue false

Transforming the global energy system is required to avoid the sixth mass extinction

Published online by Cambridge University Press:  15 September 2015

Anthony D. Barnosky*
Affiliation:
Department of Integrative Biology and Museums of Paleontology and Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
*
a)Address all correspondence to Anthony D. Barnosky at barnosky@berkeley.edu
Get access

Abstract

This study argues that the climate changes resulting from the continued burning of fossil fuels at present rates will very likely initiate extinction of many terrestrial and marine species, beginning by mid-century. Under this scenario, interactions of climate change with other well-known extinction threats promise to trigger a loss of life that has not been seen since an asteroid-strike eliminated most dinosaurs 66 million years ago. Avoiding this will require a very rapid shift of both our stationary and transportation energy sectors to carbon-neutral systems.

Mass extinctions, which result in loss of at least an estimated 75% of known species over a geologically short time period, are very rare in the 540 million year history of complex life on Earth. Only five have been recognized, the most recent of which occurred 66 million years ago, ending the reign of dinosaurs and opening the door for domination of the planet eventually by humans, who have now accelerated biodiversity loss to the extent that a Sixth Mass Extinction is plausible. Accelerated extinction rates up to now primarily have been due to human-caused habitat destruction and overexploitation of economically valuable species. Climate change caused by burning of fossil fuels adds a new and critically problematic extinction driver because the pace and magnitude of change exceeds what many species have experienced in their evolutionary history, and rapid climate change multiplies the already-existing threats. Particularly at risk are regions that contain most of the world's species, such as rainforest and coral reef ecosystems. Avoiding severe losses that would commit many species to extinction by 2100 will require transforming global energy systems to carbon-neutral ones by 2050. Currently, the transformation is occurring too slowly to avoid worst-case extinction scenarios.

Type
Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnosky, A.D.: Megafauna biomass tradeoff as a driver of quaternary and future extinctions. Proc. Natl. Acad. Sci. U. S. A. 105, 1154311548 (2008).Google Scholar
Del Grosso, S., Parton, W., Stohlgren, T., Zheng, D., Bachelet, D., Prince, S., Hibbard, K., and Olsen, R.: Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 21172126 (2008).CrossRefGoogle ScholarPubMed
Haberl, H., Erb, K-H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht, W., and Fischer-Kowalski, M.: Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. U. S. A. 104, 1294212947 (2007).CrossRefGoogle ScholarPubMed
Smith, W.K., Zhao, M., and Running, S.W.: Global bioenergy capacity as constrained by observed biospheric productivity rates. Bioscience 62, 911922 (2012).CrossRefGoogle Scholar
Vitousek, P.M., Ehrlich, P.R., Ehrlich, A.H., and Matson, P.A.: Human appropriation of the products of photosynthesis. BioScience 36, 368373 (1986).Google Scholar
Barnosky, A.D.: Dodging Extinction: Power, Food, Money, and the Future of Life on Earth (University of California Press, Berkeley, California, 2014).Google Scholar
Haberl, H., Erb, K-H., Krausmann, F., Running, S., Searchinger, T.D., and Smith, W.K.: Bioenergy: How much can we expect for 2050? Environ. Res. Lett. 8, 15 (2013). doi: 10.1088/1748-9326/8/3/031004.CrossRefGoogle Scholar
Smil, V.: Harvesting the biosphere: The human impact. Popul. Dev. Rev. 37, 613636 (2011).CrossRefGoogle ScholarPubMed
IPCC: Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, Y., and Midgley, P.M. eds.; Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2013. http://www.climatechange2013.org/images/report/WG1AR5_SPM_FINAL.pdf.Google Scholar
IPCC-SREX: Special report of the intergovernmental panel on climate change. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., Tignor, M., and Midgley, P.M. eds.; Cambridge University Press: New York, 2012; pp. 1594.Google Scholar
IPCC: Summary for policymakers. In Climate Change 2014, Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., and Minx, J.C. eds.; Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2014. http://report.mitigation2014.org/spm/ipcc_wg3_ar5_summary-for-policymakers_approved.pdf.Google Scholar
Cahill, A.E., Aiello-Lammens, M.E., Fisher-Reid, M.C., Hua, X., Karanewsky, C.J., Ryu, H.Y., Sbeglia, G.C., Spagnolo, F., Waldron, J.B., Warsi, O., and Wiens, J.J.: How does climate change cause extinction? Proc. R. Soc. B 280, 19 (2012). doi: 10.1098/rspb.2012.1890.Google ScholarPubMed
Pimm, S.L.: Climate disruption and biodiversity. Curr. Biol. 19, R595R601 (2009).CrossRefGoogle ScholarPubMed
Pimm, S.L., Abell, C.N.J., Brooks, T.M., Gittleman, J.L., Joppa, L.N., Raven, P.H.C., Roberts, M., and Sexton, J.O.: The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014). doi: 10.1126/science.1246752.Google Scholar
Harnik, P.G., Lotze, H.K., Anderson, S.C., Finkel, Z.V., Finnegan, S., and Lindberg, D.R.: Extinctions in ancient and modern seas. Trends Ecol. Evol. 27, 608617 (2012).Google Scholar
Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C., and Pounds, J.A.: Fingerprints of global warming on wild animals and plants. Nature 421, 5760 (2003).Google Scholar
Solomon, S., Battisti, D., Doney, S., Hayhoe, K., Held, I.M., Lettenmaier, D.P., Lobell, D., Mathhews, H.D., Peirrehumbert, R., Raphael, M., Richels, R., Root, T.L., Steffen, K., Tebaldi, C., Yohe, G.W., Wardent, T., Brown, L., Dunlea, E., Reidmiller, D., Freeland, S., Payne, R., and Bearrs, D.: Climate Stablilization Targets: Emissions, Concentrations, and Impacts of Decades to Millennia (National Academies Press, Washington, D.C., 2011).Google Scholar
Parmesan, C.: Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637639 (2006).CrossRefGoogle Scholar
Parmesan, C. and Yohe, G.: A globally coherent fingerprint of climate change across natural systems. Nature 421, 3742 (2003).CrossRefGoogle ScholarPubMed
Diffenbaugh, N.S. and Field, C.B.: Changes in ecologically critical terrestrial climate conditions. Science 341, 486492 (2013).Google Scholar
White, J.W.C., Alley, R.B., Archer, D.E., Barnosky, A.D., Foley, J., Fu, R., Holland, M.K., Lozier, M.S., Schmitt, J., Smith, L.C., Sugihara, G., Thompson, D.W.J., Weaver, A.J., Wofsy, S.C., Dunlea, E., Mengelt, C., Purcell, A., Gaskins, R., and Greenway, R.: Abrupt Impacts of Climate Change, Anticipating Surprises (National Academies Press, Washington, D.C., 2013).Google Scholar
Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B., and Ackerly, D.D.: The velocity of climate change. Nature 462, 10521055 (2009).Google Scholar
Barnosky, A.D.: Heatstroke, Nature in an Age of Global Warming (Island Press, Washington, D.C., 2009).Google Scholar
Dirzo, R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J.B., and Collen, B.: Defaunation in the Anthropocene. Science 345, 401406 (2014).Google Scholar
Seddon, P.J., Griffiths, C.J., Soorae, P.S., and Armstrong, D.P.: Reversing defaunation: Restoring species in a changing world. Science 345, 406412 (2014).CrossRefGoogle Scholar
Urban, M.C.: Accelerating extinction risk from climate change. Science 348, 571573 (2015).CrossRefGoogle ScholarPubMed
Moritz, C., Patton, J.L., Conroy, C.J., Parra, J.L., White, G.C., and Beissinger, S.R.: Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322, 261264 (2008).Google Scholar
Heerwaarden, B.v. and Sgrò, C.M.: Is adaptation to climate change really constrained in niche specialists? Proc. R. Soc. B 281, 14712954 (2014).Google Scholar
Moritz, C. and Agudo, R.: The future of species under climate change: resilience or decline? Science 341, 504508 (2013).Google Scholar
Blois, J.L. and Hadly, E.A.: Mammalian response to Cenozoic climatic change. Annu. Rev. Earth Planet. Sci. 37, 8.18.28 (2009).Google Scholar
Brook, B.W. and Barnosky, A.D.: Quaternary extinctions and their link to climate change. In Saving a Million Species, Hannah, L. ed.; Island Press: Washington, D.C., 2012; pp. 179198.Google Scholar
Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B., Quental, T., Marshall, C., McGuire, J.L., Lindsey, E.L., Maguire, K.C., Mersey, B., and Ferrer, E.A.: Has the Earth's sixth mass extinction already arrived? Nature 471, 5157 (2011).CrossRefGoogle ScholarPubMed
Pimm, S.L., Raven, P., Peterson, A., Sekercioglu, Ç.H., and Ehrlich, P.R.: Human impacts on the rates of recent, present, and future bird extinctions. Proc. Natl. Acad. Sci. U. S. A. 103, 1094110946 (2006).CrossRefGoogle ScholarPubMed
Pimm, S.L., Russell, G.J., Gittleman, J.L., and Brooks, T.M.: The future of biodiversity. Science 269, 347350 (1995).Google Scholar
Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M., and Palmer, T.M.: Accelerated modern human induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015). doi: 10.1126/sciadv.1400253.Google Scholar
Foden, W.B., Butchart, S.H.M., Stuart, S.N., Vié, J-C., Akçakaya, H.R., Angulo, A., DeVantier, L.M., Gutsche, A., Turak, E., Cao, L., Donner, S.D., Katariya, V., Bernard, R., Holland, R.A., Hughes, A.F., O’Hanlon, S.E., Garnett, S.T., Sekercioglu, Ç.H., and Mace, G.M.: Identifying the World’s most climate change vulnerable species: A Systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8, e65427 (2013). doi: 10.1371/journal.pone.0065427.CrossRefGoogle ScholarPubMed
Jablonski, D.: Lessons from the past: Evolutionary impacts of mass extinctions. Proc. Natl. Acad. Sci. U. S. A. 98, 53935398 (2001).Google Scholar
IUCN: International Union for Conservation of Nature Red List. http://www.iucn.org/about/work/programmes/species/red_list/, 2014.Google Scholar
Hughes, J.B., Daily, G.C., and Ehrlich, P.R.: Population Diversity: Its extent and extinction. Science 278, 689692 (1997).Google Scholar
Ceballos, G. and Ehrlich, P.R.: Mammal population losses and the extinction crisis. Science 296, 904907 (2002).Google Scholar
WWF, ZSL, GFN, and WFN: Living Planet Report 2014: Species and Spaces, People and Places; WWF: Gland, Switzerland, 2014.Google Scholar
IPCC: Intergovernmental Panel on Climate Change: Fourth Assessment Report (AR4); http://www.ipcc.ch/publications_and_data/ar4/syr/en/contents.html, 2007.Google Scholar
Alroy, J.: Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals: New perspectives on faunal stability in the fossil record. Palaeogeogr., Palaeoclimatol., Palaeoecol. 127, 285311 (1996).Google Scholar
Alroy, J.: Equilibrial diversity dynamics in North American mammals. In Biodiversity Dynamics, Turnover of Populations, Taxa, and Communities, Columbia University Press: New York, 1998; pp. 232287.Google Scholar
Avise, J.C., Walker, D., and Johns, G.C.: Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. R. Soc. London B 265, 17071712 (1998).CrossRefGoogle ScholarPubMed
Payne, J.L. and Clapham, M.E.:End-Permian mass extinction in the oceans: An ancient analog for the twenty-first century? Annu. Rev. Earth Planet. Sci. 40, 89111 (2012).CrossRefGoogle Scholar
Barnosky, A.D., Hadly, E.A., Bascompte, J., Berlow, E.L., Brown, J.H., Fortelius, M., Getz, W.M., Harte, J., Hastings, A., Marquet, P.A., Martinez, N.D., Mooers, A., Roopnarine, P., Vermeij, G., Williams, J.W., Gillespie, R., Kitzes, J., Marshall, C., Matzke, N., Mindell, D.P., Revilla, E., and Smith, A.B.: Approaching a state-shift in Earth's biosphere. Nature 486, 5256 (2012).Google Scholar
Urban, M.C., Zarnetske, P.L., and Skelly, D.K.: Moving forward: Dispersal and species interactions determine biotic responses to climate chang. Ann. N. Y. Acad. Sci. 1297, 4460 (2013).CrossRefGoogle Scholar
Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, T., and Zaks, D.P.M.: Solutions for a cultivated planet. Nature 478, 337342 (2011).Google Scholar
Hooke, R.L., Martín-Duque, J.F., and Pedraza, J.: Land transformation by humans: A review. GSA today 22, 110 (2012). doi: 10.1130/GSAT151A.1.Google Scholar
Kovach, R.P., Gharrett, A.J., and Tallmon, D.A.: Genetic change for earlier migration timing in a pink salmon population. Proc. R. Soc. B 279, 38703878 (2012).Google Scholar
Reale, D., McAdam, A.G., Boutin, S., and Berteaux, D.: Genetic and plastic responses of a northern mammal to climate change. Proc. R. Soc. London, Ser. B 270, 591596 (2003).Google Scholar
Ricke, K.L., Orr, J.C., Schneider, K., and Caldeira, K.: Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections. Environ. Res. Lett. 8, 3400334008 (2013).Google Scholar
NRC: Review of the Federal Ocean Acidification Research and Monitoring Plan (National Academies Press, Washington, D.C., 2013).Google Scholar
Crowder, L., Caldwell, M., Barry, J., Budd, A., Cohen, A., Dunbar, R., Golbuu, Y., Hoegh-Guldberg, O., Hughes, T., Kaufman, L., Kirkpatrick, M., Monismith, S., Palumbi, S., Pandolfi, J., Paytan, A., Richmond, R., Woodson, B., Barshis, D., Kroeker, K., and Kittinger, J.: Consensus Statement on Climate Change and Coral Reefs. http://hopkins.stanford.edu/climate/fulltext.pdf, 2012.Google Scholar
Pandolfi, J.M., Connolly, S.R., Marshall, D.J., and Cohen, A.L.: Projecting coral reef futures under global warming and ocean acidification. Science 333, 418422 (2011).Google Scholar
Hoegh-Guldberg, O.: Climate change, coral bleaching, and the future of the world’s coral reefs. Mar. Freshwater Res. 50, 839866 (1999).Google Scholar
Palumbi, S.R., Barshis, D.J., Traylor-Knowles, N., and Bay, R.A.: Mechanisms of reef coral resistance to future climate change. Science 344, 895898 (2014).Google Scholar
Rosenzweig, M.L., Drumlevitch, F., Borgmann, K.L., Flesch, A.D., Grajeda, S.M., Johnson, G., Mackay, K., Nicholson, K.L., Patterson, V., Pri-Tal, B.M., Ramos-Lara, N., and Serrano, K.P.: An ecological telescope to view future terrestrial vertebrate diversity. Evol. Ecol. Res. 14, 247268 (2012).Google Scholar
Williams, J.W. and Jackson, S.T.: Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475482 (2007).Google Scholar
Williams, J.W., Jackson, S.T., and Kutzbach, J.E.: Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. U. S. A. 104, 57385742 (2007).Google Scholar
Williams, J.W., Shuman, B.N., and Webb, T. III: Dissimilarity analyses of late-Quaternary vegetation and climate in eastern North America. Ecology 82, 33463362 (2001).Google Scholar
Barnosky, A.D., Carrasco, M.A., and Graham, R.W.: Collateral mammal diversity loss associated with late Quaternary megafaunal extinctions and implications for the future. In Comparing the Geological and Fossil Records: Implications for Biodiversity Studies, Vol. 358, McGowan, A.J. and Smith, A.B. eds.; Geological Society: London, 2011; pp. 179189.Google Scholar
Graham, R.W.: Quaternary mammal communities: Relevance of the individualistic response and non-analogue faunas. Paleontol. Soc. Pap. 11, 141158 (2005).Google Scholar
Graham, R.W. and Grimm, E.C.: Effects of global climate change on the patterns of terrestrial biological communities. Trends Ecol. Evol. 5, 289292 (1990).Google Scholar
FAUNMAP Working Group: Spatial response of mammals to late quaternary environmental fluctuations. Science 272, 16011606 (1996).Google Scholar
Post, E. and Brodie, J.: Anticipating novel conservation risks of increased human access to remote regions with warming. Clim. Change Responses 2, 19 (2015). doi: 10.1186/s40665-015-0011-y.Google Scholar
Barton, A., Hales, B., Waldbusser, G.G., Langdon, C., and Feely, R.A.: The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnol. Oceanogr. 57, 698710 (2012).Google Scholar
Ferrari, M.C.O., Manassa, R.P., Dixson, D.L., Munday, P.L., McCormick, M.I., Meekan, M.G., Sih, A., and Chivers, D.P.: Effects of ocean acidification on learning in coral reef fishes. PLoS One 7, e31478 (2012). doi: 10.1371/journal.pone.0031478.Google Scholar
Frommel, A.Y., Maneja, R., Lowe, D., Malzahn, A.M., Geffen, A.J., Folkvord, A., Piatkowski, U., Reusch, T.B.H., and Clemmesen, C.: Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat. Clim. Change 2, 4246 (2011).Google Scholar
Hönisch, B., Ridgwell, A., Schmidt, D.N., Thomas, E., Gibbs, S.J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R.C., Greene, S.E., Kiessling, W., Ries, J., Zachos, J.C., Royer, D.L., Barker, S., Marchitto, T.M. Jr, Moyer, R., Pelejero, C., Ziveri, P., Foster, G.L., and Williams, B.: The geological record of ocean acidification. Science 335, 10581063 (2012).Google Scholar
Liu, W., Huang, X., Lin, J., and He, M.: Seawater acidification and elevated temperature affect gene expression patterns of the pearl oyster Pinctada fucata . PLoS One 7, e33679 (2012). doi: 10.1371/journal.pone.0033679.Google Scholar
Miller, A.W., Reynolds, A.C., Sobrino, C., and Riedel, G.F.: Shellfish face uncertain future in high CO2 world: Influence of acidification on oyster larvae calcification and growth in estuaries. PLoS One 4, e5661 (2009). doi: 10.1371/journal.pone.0005661.Google Scholar
Morel, F.M.M., Archer, D., Barry, J.P., Brewer, G.D., Corredor, J.E., Doney, S.C., Fabry, V.J., Hofmann, G.E., Holland, D.S., Kleypas, J.A., Millero, F.J., Riebesell, R., Roberts, S., Park, P., Hughes, K., Chiarello, H., and Logan, C.: Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean (National Academies Press, Washington, D.C., 2010).Google Scholar
Munday, P.L., Dixson, D.L., Donelsona, J.M., Jonesa, G.P., Pratchetta, M.S., Devitsinac, G.V., and Døvingd, K.B.: Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Calif. Acad. Sci. 106, 18481852 (2009).Google Scholar
Bednaršek, N., Feely, R.A., Reum, J.C.P., Peterson, B., Menkel, J., Alin, R., and Hales, B.: Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California current ecosystem. Proc. R. Soc. B 281, 1785 (2014). doi: 10.1098/rspb.2014.0123.Google Scholar
EIA: International Energy Outlook 2013 (U.S. Energy Information Administration, 2013). http://www.eia.gov/forecasts/ieo/.Google Scholar
PricewaterhouseCoopers LLP: Two Degrees of Separation: Ambition and Reality—Low Carbon Economy Index 2014 (PricewaterhouseCoopers LLP, London, 2014).Google Scholar
Mantyka-Pringle, C.S., Visconti, P., Marco, M.D., Martin, T.G., Rondinini, C., and Rhodes, J.R.: Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103111 (2015).Google Scholar
Faiman, D.: Concerning the global-scale introduction of renewable energies: Technical and economic challenges. MRS Energy & Sustainability 1, 19 (2014). doi: 10.1557/mre.2014.8.Google Scholar
Delucchi, M.A. and Jacobson, M.Z.: Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies. Energy Policy 29, 11701190 (2011).Google Scholar
Jacobson, M.Z. and Delucchi, M.A.: A path to sustainable energy by 2030. Sci. Am. Nov. 2009, 5865 (2009).Google Scholar
Jacobson, M.Z. and Delucchi, M.A.: Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 29, 11541169 (2011).Google Scholar
Chu, S. and Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294303 (2012).Google Scholar
Roughead, G., Carl, J., and Hernandez, M.: Powering the Armed Forces: Meeting the Military's Energy Challenges (Hoover Institution Press, Stanford University, Stanford, California, 2012).Google Scholar
Barnosky, A.D., Brown, J.H., Daily, G.C., Dirzo, R., Ehrlich, A.H., Ehrlich, P.R., Eronen, J.T., Fortelius, M., Hadly, E.A., Leopold, E.B., Mooney, H.A., Myers, J.P., Naylor, R.L., Palumbi, S., Stenseth, N.C., and Wake, M.H.: Introducing the scientific consensus on maintaining humanity's life support systems in the 21st century: Information for policy makers. Anthropocene Rev. 1, 78109 (2014).Google Scholar
Rogelj, J., McCollum, D.L., Reisinger, A., Meinshausen, M., and Riahi, K.: Probabilistic cost estimates for climate change mitigation. Nature 493, 7983 (2012).Google Scholar
Kahrl, F. and Roland-Holst, D.: Climate Change in California (University of California Press, Berkeley, 2012).Google Scholar
Barnosky, A.D., Hadly, E.A., Dirzo, R., Fortelius, M., and Stenseth, N.C.: Translating science for decision makers to help navigate the Anthropocene. Anthropocene Rev. 1, 111 (2014).Google Scholar
Costanza, R., Groot, R.d., Sutton, P., Ploeg, S.v.d., Anderson, S.J., Kubiszewski, I., Farber, S., and Turnerf, R.K.: Changes in the global value of ecosystem services. Global Environ. Change 26, 152158 (2014).Google Scholar
Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S., and Naeem, S.: Biodiversity loss and its impact on humanity. Nature 486, 5967 (2012).CrossRefGoogle ScholarPubMed
Sepkoski, J.J.: Patterns of phanerozoic extinction: A perspective from global data bases. In Global Events and event Stratigraphy in the Phanerozoic, Walliser, O.H. ed.; Springer-Verlag: Berlin, 1996; pp. 3551.Google Scholar
Sheehan, P.M.: The late Ordovician mass extinction. Annu. Rev. Earth Planet. Sci. 29, 331364 (2001).Google Scholar
Sutcliffe, O.E., Dowdeswell, J.A., Whittington, R.J., Theron, J.N., and Craig, J.: Calibrating the late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth's orbit. Geology 28, 967970 (2000).Google Scholar
Bambach, R.K.: Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127155 (2006).Google Scholar
Sandberg, C.A., Morrow, J.R., and Zlegler, W.: Late Devonian sea-level changes, catastrophic events, and mass extinctions. In Catastrophic Events and Mass Extinctions: Impacts and beyond, Vol. 356, Koeberl, C. and MacLeod, K.G. eds.; Geological Society of America, Boulder, 2002; pp. 387473.Google Scholar
McGhee, G.R.: The Late Devonian Mass Extrinction (Columbia University Press, New York, 1996); 302 pp.Google Scholar
Murphy, A.E., Sageman, B.B., and Hollander, D.J.: Eutrophication by decoupling of the marine biogeochemical cycles of C, N, and P: A mechanism for the late devonian mass extinction. Geology 28, 427430 (2000).Google Scholar
Algeo, T.J., Scheckler, S.E., and Maynard, J.B.: Effects of the middle to late devonian spread of vascular land plants on weathering regimes, marine biota, and global climate. In Plants Invade the Land: Evolutionary and Environmental Approaches, Gensel, P.G. and Edwards, D. eds.; Columbia University Press: New York, 2000; pp. 213236.Google Scholar
Berner, R.A.: Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc. Natl. Acad. Sci. U. S. A. 99, 41724177 (2002).Google Scholar
Erwin, D.H.: The Permo-Triassic extinction. Nature 367, 231236 (1994).Google Scholar
Payne, J.L., Turchyn, A.V., Paytan, A., DePaolo, D.J., Lehrmann, D.J., Yu, M., and Weig, J.: Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl. Acad. Sci. U. S. A. Early Edition (2010). http://www.pnas.org/cgi/doi/10.1073/pnas.0914065107.Google Scholar
Knoll, A.H., Bambach, R.K., Payne, J.L., Pruss, S., and Fischer, W.W.: Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295313 (2007).Google Scholar
Burgess, S.D., Bowring, S., and Shen, S-z.: High-precision timeline for Earth's most severe extinction. Proc. Natl. Acad. Sci. U. S. A. 111, 33163321 (2014).Google Scholar
Shen, S-z., Crowley, J.L., Wang, Y., Bowring, S.A., Erwin, D.H., Sadler, P.M, Cao, C.-j., Rothman, D.H., Henderson, C.M., Ramezani, J., Zhang, H., Shen, Y., Wang, X.-d., Wang, W., Mu, L., Li, W.-z., Tang, Y.-g., Liu, X.-l., Liu, L.-j., Zeng, Y., Jiang, Y.-f., and Jin, Y.-g.: Calibrating the end-Permian mass extinction. Science 334, 13671372 (2012).Google Scholar
Sun, Y., Joachimski, M.M., Wignall, P.B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X.: Lethally hot temperatures during the early Triassic greenhouse. Science 338, 366370 (2012).Google Scholar
Hesselbo, S.P., McRoberts, C.A., and Palfy, J.: Triassic-Jurassic boundary events: Problems, progress, possibilities. Palaeogeogr., Palaeoclimatol., Palaeoecol. 244, 110 (2007).Google Scholar
Ward, P.D., Haggart, J.W., Carter, E.S., Wilbur, D., Tipper, H.W., and Evans, T.: Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science 292, 11481151 (2001).Google Scholar