Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T14:19:47.305Z Has data issue: false hasContentIssue false

1.3 μm InAs/GaAs Quantum Dot Led

Published online by Cambridge University Press:  10 February 2011

D. Childs
Affiliation:
Centre for Electronic Materials and Devices, The Blackett Laboratory, Imperial College, London, UK
S. Malik
Affiliation:
Centre for Electronic Materials and Devices, The Blackett Laboratory, Imperial College, London, UK
P. Siverns
Affiliation:
Centre for Electronic Materials and Devices, The Blackett Laboratory, Imperial College, London, UK
C. Roberts
Affiliation:
Centre for Electronic Materials and Devices, The Blackett Laboratory, Imperial College, London, UK
R. Murray
Affiliation:
Centre for Electronic Materials and Devices, The Blackett Laboratory, Imperial College, London, UK
Get access

Abstract

We have determined the growth conditions which result in a narrow linewidth and room temperature emission at 1.3pm from InAs/GaAs Quantum dots (QDs). The QDs formed under these conditions are extremely uniform in size and exhibit an emission linewidth of only 25meV. Single QD layers have been incorporated into p-i-n diodes which exhibit strong electroluminescence. We have compared the efficiency of these devices with a nominally identical quantum well device. The QD based device exhibits a higher electroluminescence efficiency, especially at low current densities. At higher current densities there is a loss of efficiency due to recombination from excited states.

Operated under reverse bias, the diodes act as photo-detectors and the measured photocurrent spectrum exhibits peaks due to absorption in the ground and excited states of the QDs as well as the 2D confining layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40, 939 (1982).10.1063/1.92959Google Scholar
2. Shoji, H., Nakata, Y., Mukai, K., Sugiyama, Y., Sugawara, M., Yokoyama, N. and Ishikawa, H., Appl. Phys. Lett. 71, 193 (1997).10.1063/1.120426Google Scholar
3. Ishikawa, H., Shoji, H., Nakata, Y., Mukai, K., Sugawara, M., Egawa, M., Ohtsuka, N., Sugiyama, Y., Futatsugi, T. and Yokoyama, N., J. Vac. Sci. Technol. A16, 794 (1998).10.1116/1.581060Google Scholar
4. Schmidt, O., Kirstaedter, N., Ledentzov, N., Mao, M-H., Bimburg, D., Ustinov, V., Egorov, A., Zhukov, A., Maximov, M., Kop'ev, P. and Alferov, Z., Electron. Lett. 32, 8 (1996).10.1049/el:19960851Google Scholar
5. Heitz, R., Kalburge, A., Xie, Q., Grundmann, M., Chen, P., Hoffmann, A., Madhukar, A. and Bimburg, D., Phys. Rev. B 57, 9050 (1998).10.1103/PhysRevB.57.9050Google Scholar
6. Blondelle, J., DeNeve, H., Demeester, P., Daele, P. Van, Borghs, G. and Baets, R., Electron. Lett. 31, 1286 (1995).10.1049/el:19950884Google Scholar
7. Schubert, E., Hunt, N., Malik, R., Micovic, M. and Miller, D., J. Lightwave Technol. LT–14, 1721 (1996).10.1109/50.507950Google Scholar
8. Gray, J.W., Childs, D., Malik, S., Sivems, P., Roberts, C., Stavrinou, P., Whitehead, M., Murray, R. and Parry, G., Electron. Lett. 35, 242 (1999).10.1049/el:19990114Google Scholar
9. Baklenov, O., Nie, H., Anseln, K., Campbell, J. and Streetman, B., Electron. Lett. 34, 694 (1998).10.1049/el:19980487Google Scholar
10. Campbell, J.C., Huffaker, D.L., Deng, H. and Deppe, D.G., Electron. Lett. 33, 1337 (1997).10.1049/el:19970906Google Scholar
11. Mirin, R.P., Ibbetson, J.P., Nishi, K., Gossard, A.C. and Bowers, J.E., Appl. Phys. Lett. 67, 3795 (1995).10.1063/1.115386Google Scholar
12. Malik, S., Siverns, P., Childs, D., Roberts, C., Hartmann, J-M. and Murray, Ray, This proceedings.Google Scholar
13. Hosea, T.J.C., Lancefield, D. and Garawal, N.S., J. Appl. Phys. 79, 4338 (1996).10.1063/1.361743Google Scholar
14. Grundmann, M., Christen, J., Ledenstov, N., Bohrer, J., Bimburg, D., Ruvimov, S., Wemer, P., Richter, U., Gosele, U., Heydenreich, J., Ustinov, V., Egorov, A., Zhukov, A., Kop'ev, P. and Alferov, Z., Phys. Rev. Lett, 74, 4043 (1995).10.1103/PhysRevLett.74.4043Google Scholar
15. Brandt, O., Tapfer, L., Ploog, K., Bierwolf, R. and Hohenstein, M., Appl. Phys. Lett, 61, 2814 (1992).10.1063/1.108046Google Scholar
16. Murray, R., Malik, S., Siverns, P., Childs, D., Roberts, C., B.Joyce and Davock, H., Jpn. J. Appl. Phys. 38, 2054 (1999).Google Scholar
17. Woggon, U., Langbein, W., Hvam, J., Rosenauer, A., T.Remmele and Gerthsen, D., Appl. Phys. Lett. 71, 377 (1997).10.1063/1.119542Google Scholar
18. Yu, H., Lycett, S., Roberts, C. and Murray, R., Appl. Phys. Lett. 69, 4087 (1996).10.1063/1.117827Google Scholar
19. Dingle, W. Wiegmann and Henry, C., Phys. Rev. Lett. 33, 827 (1974).10.1103/PhysRevLett.33.827Google Scholar
20. Gasiorowicz, S., Quantum Mechanics, 1st ed. (John Wiley and Sons Inc. 1974), p133.Google Scholar
21. Jain, S., Willander, M. and Maes, H., Semicond. Sci. Technol. 11, 641 (1996).10.1088/0268-1242/11/5/004Google Scholar
22. Shchukin, V., Ledentsov, N., Kop'ev, P. and Bimburg, D., Phys. Rev. Lett. 75, 2968 (1995).10.1103/PhysRevLett.75.2968Google Scholar
23. Hasegawa, Y., Kiyama, H., `Xue, Q. and Sakurai, T., Appl. Phys. Lett. 72, 2265 (1998).10.1063/1.121273Google Scholar
24. Moison, J., Houzay, F., Barthe, F., Leprince, L., Andre, E. and Vatel, O., Appl. Phys. Lett. 64, 196 (1994).10.1063/1.111502Google Scholar