Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T01:12:12.847Z Has data issue: false hasContentIssue false

1-D and 2-D forms of Copper Sulfide: Electrochemical Deposition and Morphological Analysis

Published online by Cambridge University Press:  01 February 2011

Krishna Veer Singh
Affiliation:
ksingh@engr.ucr.edu, UC Riverside, Chemical Engineering, 3433 Avocado Street, Riverside, CA, 92507, United States
Alfredo A. Martinez-Morales
Affiliation:
amartine@ee.ucr.edu, UC Riverside, Electrical Engineering, Riverside, CA, 92521, United States
Mihrimah Ozkan
Affiliation:
mihri@ee.ucr.edu, UC Riverside, Electrical Engineering, Riverside, CA, 92521, United States
Get access

Abstract

Copper sulfide is a material with immense potential for applications in photovoltaics. Particularly, copper sulfide 1-D nanostructures (i.e. nanowires, nanorods) with well-defined morphologies may enable new types of applications or may enhance the performance of existing photoelectric devices with quantum confinement effects. In this work, we report the synthesis of copper sulfide nanorods by simple, yet very effective template assisted electrochemical deposition. Before synthesizing 1-D copper sulfide nanorods, a detailed study was conducted on electrodeposited 2-D copper sulfide films to ascertain the right parameters for electrodeposition including; electrolyte composition, temperature, deposition potential and membrane type. Excellent structural properties of these resultant nanorods make them desirable for applications in the future nano-opto-electronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bragagnolo, J. A. et al. IEEE Transactions on Electron Devices 27, 645651 (1980).Google Scholar
2. Aldhafiri, A. M., Russell, G. J. and Woods., J., Semiconductor Science and Technology 6, 983988 (1991).Google Scholar
3. Chen., J. et al. Applied Physics Letters 80, 36203622 (2002).Google Scholar
4. Lee., H., Yoon, S. W., Kim, E. J. and Park., J., Nano Letters 7(3) 778784 (2007).Google Scholar
5. Lu, Q. Y., Gao., F. and Zhao, D. Y., Nano Letters 2, 725728 (2002).Google Scholar
6. Sigman, M. B. et al. Journal of the American Chemical Society 125, 1605016057 (2003).Google Scholar
7. Wang, S. H. and Yang, S. H., Chemical Physics Letters 322, 567571 (2000).Google Scholar
8. Wang, N., Fung, K. K., Wang., S. and Yang., S., Journal of Crystal Growth 233, 226232 (2001).Google Scholar
9. Schonenberger., C. et al. Journal of Physical Chemistry B 101, 54975505 (1997).Google Scholar
10. Dobrev., D., Vetter., J., Angert., N., and Neumann., R., Applied Physics a-Materials Science & Processing 69, 233237 (1999).Google Scholar
11. Yukawa., T., Kuwabara., K. and Koumoto., K., Thin Solid Films 280, 160162 (1996).Google Scholar
12. Haslina., I. et al. Solar Energy Materials & Solar Cells 73 351365 (2002).Google Scholar
13. Börnstein, L. Non-tetrahedrally bonded elements and binary compounds I 41st Vol. (Springer, Berlin, 1998)Google Scholar