Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T10:02:16.221Z Has data issue: false hasContentIssue false

3-Dimensional Al2O3 Fiber Networks using Low Temperature Atomic Layer Deposition on a Cotton Template

Published online by Cambridge University Press:  01 February 2011

Daisuke Hojo
Affiliation:
d_hojo@m4.dion.ne.jp, Tohoku Univ., Institute of Multidisciplinary Research for Advanced Materials,, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Sendai, N/A, Japan, 81-22-217-5630, 81-22-217-5631
G. Kevin Hyde
Affiliation:
gkhyde@ncsu.edu, North Carolina State University, Department of Chemical and Biomolecular Engineering, 911 Partners Way, Centennial Campus, Raleigh, NC, 27695, United States
Joseph Spagnola
Affiliation:
jcspagno@unity.ncsu.edu, North Carolina State University, Department of Material Science and Engineering, 911 Partners Way, Centennial Campus, Raleigh, NC, 27695, United States
Gregory N Parsons
Affiliation:
parsons@ncsu.edu, North Carolina State University, Department of Chemical and Biomolecular Engineering, 911 Partners Way, Centennial Campus, Raleigh, NC, 27695, United States
Get access

Abstract

Micro-scale woven structures were replicated 3 dimensionally by conformal coating onto natural woven cotton using a binary reaction of trimethylaluminum and water at 100°C. Even after the woven cotton was removed at 450°C, the woven structures completely remained. Results demonstrate the capability of ALD to penetrate into the complex 3D network structure of natural woven cotton to form uniform coating at low temperature and give insight into general understanding of methodology to translate deposition processes from 2D surface to a 3D network to obtain a uniform coating throughout the sample network bulk. It also shows the possibility of replication of micro-scale structures from highly conformal coatings to give the unique synthesis root of hollow structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lauhon, L. J., Gudiksen, M. S., Wang, D., and Lieber, C. M., Nature 420, 57 (2002).Google Scholar
2. Min, Y. –S., Bae, E. J., Jeong, K. S., Cho, Y. J., Lee, J. –H., Choi, W. B., and Park, G. –S., Adv. Mater. 15, 1019 (2003).Google Scholar
3. Lee, J. S., Min, B., Cho, K. Kim, S. Park, J. Lee, Y. T., Kim, N. S., Lee, M. S., Park, S. O., and Moon, J. T., J. Cryst. Growth 254, 443 (2003).Google Scholar
4. Daub, M. Knez, M. Goesele, U. and Nielsch, K. J. Appl. Phys. 101, 09J111 (2007).Google Scholar
5. Steinhart, M. Wendorff, J. H., Greiner, A. Wehrspohn, R. B., Nielsch, K. Schilling, J. Choi, J. and Gosele, U. Science 14, 1997 (2002).Google Scholar
6. Peng, Q. Sun, X. –Y., Spagnola, J. C., Hyde, G. K., Spontak, R. J., and Parsons, G. N., Nano Lett. 7, 719 (2007).Google Scholar
7. Kemell, M. Pore, V. Ritala, M. Leskela, M. and Linden, M. J. Am. Chem. Soc. 127, 14178 (2005).Google Scholar
8. Kim, H. W. and Shim, S. H., Appl. Surf. Sci 253, 510 (2006).Google Scholar
9. Caruso, R. A., Schattka, J. H., and Greiner, A. Adv. Mater. 13, 1577 (2001).Google Scholar
10. Lu, H. Ahang, L. Xing, W. Wang, H. and Xu, N. Mater. Chem. and Phys. 94, 322 (2005).Google Scholar
11. Li, G. Liu, C. and Liu, Y. J. Am. Ceram. Soc. 90, 1283 (2007).Google Scholar
12. Hyde, G. K., Park, K. J., Stewart, S M., Hinestroza, J. P., and Parsons, G. N., Langmuir 23, 9844 (2007).Google Scholar
13. Cao, J. Rambo, C. R., and Sieber, H. J. Porous Mater. 11, 163 (2004).Google Scholar
14. Andrade, T. E. Jr., Rambo, C.R., Sieber, H. Martinelli, A. E., and Melo, D. M. A., J Mater Sci. 42, 5426 (2007).Google Scholar
15. Huang, J. Ichinose, I. and Kunitake, T. Angew. Chem. Int. Ed. 45, 2883 (2006).Google Scholar
16. Yang, Z. Q., He, L. L., Jin, Z. X., and Ye, H. Q., J. Phys.: Condens. Matter 13, 8475 (2001).Google Scholar
17. Hoang, V. V. and Oh, S. K., J. Phys.: Condens. Matter 17, 3025 (2005).Google Scholar
18. Gutierrez, G. Rev. Mex. Fis. 48(S3), 60 (2002).Google Scholar
19. Paiva, C. Z. Junior, Carvalho, L. H. de, Fonseca, V. M., Monteiro, S. N., and d'Almeida, J. R. M., Polym. Test. 23, 131 (2004).Google Scholar
20. Zarate, C. N., Aranguren, M. I., Rboredo, M. M., J. Appl. Polym. Sci. 77, 1832 (2000).Google Scholar
21. Gassan, J. and Bledzki, A. K., Comp. Sci. Technol. 59, 1303 (1999).Google Scholar