No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
Formation energies of antisite defects and vacancies were derived for the L12-ordered intermetallics Ni3Al, Ni3Ga, Pt3Ga, and Pt3In by a supercell ab initio approach. A thermodynamic treatment of point-like defects was then used for the calculation of temperature-dependent defect properties. Energy profiles for atom jumps in Ni3Al in systematically varied atomic neighborhoods were calculated by statically displacing the jumping atom or by using a nudged elastic band method. It is discussed how a kinetic Monte-Carlo model can be modified so that the jump barrier height reflects the strongest neighborhood influences.