Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T07:01:13.248Z Has data issue: false hasContentIssue false

Ab Initio Molecular Dynamics and Elastic Properties of TiC and TiN Nanoparticles

Published online by Cambridge University Press:  17 March 2011

A. V. Postnikov
Affiliation:
Theoretical Low-Temperature Physics, FB10, Gerhard Mercator University Duisburg, D-47048 Duisburg, Germany
P. Entel
Affiliation:
Theoretical Low-Temperature Physics, FB10, Gerhard Mercator University Duisburg, D-47048 Duisburg, Germany
Get access

Abstract

The results of first-principles simulations of relaxed ground-state structure and vibrational modes are presented for titanium carbide and titanium nitride clusters of nearly stoichiometric composition and compared to frozen phonon and molecular dynamics calculations for crystalline TiC and TiN. The calculations have been done with the SIESTA method, using norm-conserving pseudopotentials and the basis of strictly localized numerical pseudoatomic orbitals. The dominant vibration mode corresponding to the zone-center TO phonon (14 THz) persists and gets hardened (21 THz) in the small Ti4C4 cluster. The increase of the cluster size to Ti14C13 leads to an enhancement of vibrational density of states in the intermediate range of frequencies, including the phonon band gap of pure crystalline TiC (near 15 THz). Similar trends can be noted for the Ti-N system, with the vibration spectrum slightly scaled upwards but otherwise very close to that of TiC. The clusters studied are yet too small to perform a reliable analysis of acoustic modes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baroni, S., Gironcoli, S. de, Corso, A. Dal and Giannozzi, P., Rev. Mod. Phys. 73, 515 (2001).Google Scholar
2. Sánchez-Portal, D., Ordejón, P., Artacho, E. and Soler, J. M., Int. J. Quant. Chem. 65, 453 (1997); E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García and J. M. Soler, Phys. Stat. Solidi (b) 215, 809 (1999); J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón and D. Sánchez-Portal, http://arXiv.org/abs/cond-mat/0111138.Google Scholar
3. Troullier, N. and Martins, J.L., Phys. Rev. B 43, 1993 (1991).Google Scholar
4. Ahuja, R., Eriksson, O., Wills, J. M., and Johansson, B., Phys. Rev. B 53, 3072 (1996).Google Scholar
5. Pintschovius, L., Reichardtm, W. and Scheerer, B., J. Phys. C: Solid State Phys. 11, 1557 (1978).Google Scholar
6. Jochym, P.T., Parlinski, K., and Sternik, M., Eur. Phys. J. B. 10, 9 (1999)Google Scholar
7. Singh, David J., Planewaves, Pseudopotentials and the LAPW Method (Kluwer Academic Publishers, Boston, 1994), 115 pp.; P. Blaha, K. Schwarz and J. Luitz, Improved and updated Unix version of the original copyrighted WIEN-code, which was published by P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey, in Comput. Phys. Commun. 59, 339 (1990).Google Scholar
8. Spengler, W., Kaiser, R., Christensen, A.N. and Müller-Vogt, G., Phys. Rev. B 17, 1095 (1978).Google Scholar
9. Rohmer, M.-M., Bénard, M. and Poblet, J.-M., Chem. Rev. 100, 495 (2000).Google Scholar
10. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids (Oxford University Press, Oxford, 1987), p. 185.Google Scholar