Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T02:28:28.896Z Has data issue: false hasContentIssue false

Ab initio studies of electronic structure of defects on the Te sites in PbTe

Published online by Cambridge University Press:  01 February 2011

Salameh Ahmad
Affiliation:
ahmad@pa.msu.edu, Michigan State University, 4261 BioMedical & Physical Sciences, East Lansing, Michigan, 48823, United States
S. D. Mahanti
Affiliation:
mahanti@pa.msu.edu, Michigan State University, Physics and Astronomy, United States
M. G. Kanatzidis
Affiliation:
kanatzid@cem.msu.edu, Michigan State University, Department of Chemistry, United States
Get access

Abstract

Ab initio electronic structure calculations have been carried out to understand the nature of anionic defect states in PbTe. We find that Te vacancies strongly perturb the electronic density of states (DOS) near the band gap region. New states of predominantly Pb p character appear in the band gap. Iodine is an ideal substitutional defect and a donor. Sulpher and Selenium do not affect the states near the conduction band minimum but suppress the DOS near the valence band maximum. These results have important implications on the thermoelectric properties of PbTe and PbTexM1−x (M=S, Se) ternary systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Agrawal, G. P. and Dutta, N. K. in Semiconductor Lasers (New York: Van Nostrand Reinhold) p. 547 (1993);Google Scholar
Chatterjee, S. and U. Pal Optical Eng. 32 2923 (1993).Google Scholar
2. Chaudhuri, T. K., Int. J. Energy Res. 16 481 (1992).Google Scholar
3. Dughaish, J. H., Physica B 322 205 (2002).Google Scholar
4. Ioffe, A. F., Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch) (1957).Google Scholar
5. Skrabek, E. A. and Trimmer, D. S. in CRC Handbook of Thermoelectrics, ed. Rowe, D M (Boca Raton: CRC Press) p 267 (1995).Google Scholar
6. Harman, T. C., Sprears, D. L., M. J., and Manfra, , 1996 J. Elec. Mater. 25 1121 (1996);Google Scholar
Harman, T. C., Taylor, P. J., Walsh, M. P., and LaForge, B. E., 2002 Science 297 2229 (2002).Google Scholar
7. Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K. and Kanatzidis, M. G., Science 303 818 (2004).Google Scholar
8. Blake, N. P. and Metiu, H., in Chemistry, Physics, and Material Science of Thermoelectric Materials Beyond Bismuth telluride ed. Kanatzidis, M G, Mahanti, S D and Hogan, T (New York: Kluwer Academic/Plenum Publishers) p 259 (2003).Google Scholar
9. Mahanti, S. D., Larson, P. M., Bilc, D. and Li H, H., in Chemistry, Physics, and Material Science of Thermoelectric Materials Beyond Bismuth telluride ed. Kanatzidis, M G, Mahanti, S D and Hogan, T (New York: Kluwer Academic/Plenum Publishers) p 227 (2003).Google Scholar
10. Ahmad, S., Bilc, D., Mahanti, S.D., and Kanatzidis, M.G., in Semiconductor Defect Engineering- Materials, Synthetic Structures and Devices, edited by Ashok, S., Chevallier, J., Sopori, B.L., Tabe, M., and Kiesel, P. (Mater. Res. Soc. Symp. Proc. 864, Warrendale, PA, 2005), E9.23.Google Scholar
11. Pantelides, S. T., Deep centers in Semiconductors 2nd ed. Gordon and breach (Yverdon, Switzerland) (1992);Google Scholar
Pantelides, S. T., 1978 Rev. Mod. Phys. 50 797 (1978).Google Scholar
12. Lent, C. S., Bowen, M. A., Dow, J. D., Allgaiger, R. S., Sankey, O. F., and Ho, E. S., Solid State Communications 61 83 (1987).Google Scholar
13. Ryabova, L. I. and Khokhlov, D. R., JETP Letters 80, 133139 (2004) and refernces therein.Google Scholar
14. Kohn, W., Solid StatePhysics ed Seitz, F and Turnbull, D (New York: Academic) vol 5 Chap 4 (1957).Google Scholar
15. Bilc, Daniel, Mahanti, S D, Quarez, Eric, Hsu, Kuei-Fang, Pcionek, Robert, and Kanatzidis, M G, Phys. Rev. Lett. 93 146403 (2004);Google Scholar
Mahanti, S D and Bilc, Daniel, J. of Phys., Cond. Matt. 16 55277 (2004).Google Scholar
16. Singh, D. J., Planewaves, Pseudopotentials, and the LAPW method (Boston: Kluwer Acadimic)(1994)Google Scholar
17. Perdew, J P, Burke, K and Ernzerhof, M, Phys. Rev. Lett. 77 3865 (1996).Google Scholar
18. Koelling, D. D. and Harmon B, B. J. Phys. C 13 6147 (1980).Google Scholar
19. Blaha, P. et al. , WIEN2K, An Augmented Plane Wave +Local Orbitals Program for Calculating Crystal Properties, Schwarz, K., Techn. Universitat Wien, Austria (2001).Google Scholar