Published online by Cambridge University Press: 01 February 2011
Fe3Al-based alloys constitute a very promising class of intermetallics with great potential for substituting austenitic- and martensitic steels at elevated temperatures. A wider use of these materials is partly hampered by their moderate ductility at ambient temperatures. Theoretical ab initio based calculations are becoming increasingly useful to materials scientists interested in designing new alloys. Such calculations are nowadays able to accurately predict basic material properties by needing only the atomic composition of the material. We have therefore employed this approach to explore (i) the relation between chemical composition and elastic constants, as well as (ii) the effect transition-metal substituents (Ti, W, V, Cr, Si) have on this relation. Using a scale-bridging approach we model the integral elastic response of Fe3Al-based polycrystals employing a combination of (i) single crystal elastic stiffness data determined by parameter-free first-principles calculations in combination with (ii) Hershey's homogenization model. The ab initio calculations employ density-functional theory (DFT) and the generalized gradient approximation (GGA). The thus determined elastic constants have been used to calculate the ratio between the bulk B and shear G moduli as an indication of brittle/ductile behavior. Based on this approach we have explored chemical trends in order to tailor mechanical properties. Using this information we have cast a selected set of Fe3Al-based ternary alloys, obtained for these the elastic constants by performing impulse excitation measurements at room as well as liquid nitrogen temperature and compared them with our theoretical results.