Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T02:16:09.843Z Has data issue: false hasContentIssue false

Ab initio Study of the Hydrogen Molecule on ZnO Surfaces

Published online by Cambridge University Press:  18 July 2011

Po-Liang Liu
Affiliation:
Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung, Taiwan 402, Republic of China
Yen-Ting Wu
Affiliation:
Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung, Taiwan 402, Republic of China
Yu-Jin Siao
Affiliation:
Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung, Taiwan 402, Republic of China
Get access

Abstract

We conduct first-principles total-energy density functional calculations to study the interaction of H2 on ZnO surfaces. Four surface models of Zn-terminated (0001)-, O-terminated (0001)-, , and oriented ZnO planes in the presence of H2 are evaluated. The relative stability of four different surface models is examined as a function of the chemical potentials of oxygen and hydrogen. We find that only surfaces of O-terminated (0001)-oriented ZnO models exhibit active sites for the dissociation of H2, which in turn enables the formation of water from dissociative chemisorption of 2H on the O-terminated ZnO(0001) surface. The surface energy of O-terminated ZnO(0001) surface in the presence of water was found to be negative under the O-rich and H-rich condition. The findings agree with the experimental observations that ZnO epitaxial layers are easily etched by hydrogen at typical growth temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakahara, K., Tanabe, T., Takasu, H., Fons, P., Iwatal, K., Yamadal, A., Matsubara, K., Hunger, R. and Niki, S., Jpn. J. Appl. Phys. 40, 250 (2001).Google Scholar
2. Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S. F., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H. and Kawasaki, M., Nat. Mater. 4, 42 (2005).Google Scholar
3. Zhao, B., Yang, H., Du, G., Miao, G., Zhang, Y., Gao, Z., Yang, T., Wang, J., Li, W., Ma, Y., Yang, X., Liu, B., Liu, D., and Fang, X., J. Cryst. Growth 258, 130 (2003).Google Scholar
4. Dai, J., Liu, H., Fang, W., Wang, L., Pu, Y., Chen, Y., and Jiang, F., J. Cryst. Growth 283, 93 (2005).Google Scholar
5. Smith, T. P., Mecouch, W. J., Miraglia, P. Q., Roskowski, A. M., Hartlieb, P. J., and Davis, R. F., J. Cryst. Growth 257, 255 (2003).Google Scholar
6. Pan, C.J., Tu, C.W., Tun, C.J., Lee, C.C., Chi, G.C., J. Cryst. Growth 305, 133 (2007).Google Scholar
7. Hong, S.-K., Ko, H.-J., Chen, Y., Hanada, T., and Yao, T., J. Cryst. Growth, 214/215 81 (2000).Google Scholar
8. Ko, H. J., Chen, Y. F., Hong, S. K., Wenisch, H., Yao, T., and Look, D. C., Appl. Phys. Lett. 77, 3761 (2000).Google Scholar
9. Lin, C.-W., Ke, D.-J., Chao, Y.-C., Chang, L., Liang, M.-H., and Ho, Y.-T., J. Cryst. Growth 298, 472 (2007).Google Scholar
10. Ougazzaden, A., Rogers, D.J., Hosseini Teherani, F., Moudakir, T., Gautier, S., Aggerstam, T., Ould Saad, S., Martin, J., Djebbour, Z., Durand, O., Garry, G., Lusson, A., McGrouther, D. and Chapman, J.N., J. Cryst. Growth 310, 944 (2008).Google Scholar
11. Rogers, D. J., Hosseini Teherani, F., Ougazzaden, A., Gautier, S., Divay, L., Lusson, A., Durand, O., Wyczisk, F., Garry, G., Monteiro, T., Correira, M. R., Peres, M., Neves, A., McGrouther, D., Chapman, J. N. and Razeghi, M., Appl. Phys. Lett. 91, 071120 (2007).Google Scholar
12. Liu, P.-L., Chizmeshya, A. V. G., Kouvetakis, J., and Tsong, I. S. T., Phys. Rev. B, 72, 245335 (2005).Google Scholar
13. Liu, P.-L., Chizmeshya, A. V. G., and Kouvetakis, J., Phys. Rev. B, 77, 035326 (2008).Google Scholar
14. Meyer, B., Phys. Rev. B 69, 045416 (2004).Google Scholar
15. Liu, P.-L. and Siao, Y.-J., Scripta Mater. 64, 483 (2011).Google Scholar
16. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
17. Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
18. Perdew, J. P., Chevary, J. A., Vosko, S. H.. Jackson, K. A., Petersen, M. R., and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).Google Scholar
19. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
20. Kresse, G. and Furthmüller, J., Comput. Mater. Sci. 6, 15 (1996).Google Scholar
21. Kresse, G. and Hafner, J., J. Phys. Condens. Matter. 6, 8245 (1994).Google Scholar
22. Kresse, G. and Joubert, J., Phys. Rev. B 59, 1758 (1999).Google Scholar