Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T04:14:16.106Z Has data issue: false hasContentIssue false

Ab Initio-Calculations of Residual Resistivities For Dilute Ni-Alloys

Published online by Cambridge University Press:  25 February 2011

I. Mertig
Affiliation:
Technische Universität Dresden, Institut für Theoretische Physik, Mommsenstr. 13, 0-8027 Dresden, Germany
R. Zeller
Affiliation:
Institut für Festkörperforschung der Kernforschungsanlage Jülich, D-5170 Jülich, Germany
P.H. Dederichs
Affiliation:
Institut für Festkörperforschung der Kernforschungsanlage Jülich, D-5170 Jülich, Germany
Get access

Abstract

We report about residual resistivity calculations for dilute Ni alloys which are based on density-functional theory and the Korringa-Kohn-Rostoker Green's-function method. The transport is described quasiclassically by means of the Boltzmann equation using a two current model for the ferromagnetic host. In particular we consider 3d, 4d, 4sp and 5sp impurities in Ni and include in addition to the impurity atom one shell of perturbed host atoms in the calculation. For the residual resistivity satisfactory agreement with the experiments is obtained in practically all cases. We clarify the role of both subbands for the transport properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mott, N. C., Adv. Phys. 13, 325 (1964).Google Scholar
[2] Farrell, T. and Greig, D., J. Phys. C: Solid St. Phys. 1, 1359 (1968).Google Scholar
[3] Durand, J. and Gautier, F., J. Phys. Chem. Solids 31, 2773 (1970).Google Scholar
[4] Schwerer, F. C. and Conroy, J. W., J. Phys. F: Met. Phys. 1, 877 (1971).CrossRefGoogle Scholar
[5] Price, D. C. and Williams, G., J. Phys. F: Met. Phys. 3, 810 (1973).Google Scholar
[6] Greig, D. and Rowlands, J. A., J. Phys. F: Met. Phys. 4, 232 (1974).Google Scholar
[7] Dorleijn, J. F. and Miedema, A. R., J. Phys. F: Met. Phys. 5, 487 (1975).Google Scholar
[8] Fert, A. and Campbell, I. A., J. Phys. F: Met. Phys. 6, 849 (1976).Google Scholar
[9] Campbell, I. A. and Fert, A., in Ferromagnetic materials, edited by Wohlfarth, E. P. (North-Holland publishing Company Amsterdam, New York, Oxford, 1982).Google Scholar
[10] Yamashita, J. and Hayakawa, H., Prog. of Theor. Phys. 56, 361 (1976).Google Scholar
[11 Bliigel, S., Akai, H., Zeller, R., and and Dederichs, P. H., Phys. Rev. B 35, 3271 (1987).CrossRefGoogle Scholar
[12] Stefanou, N., Oswald, A., Zeller, R., and Dederichs, P. H., Phys. Rev. B 35, 6911 (1987).Google Scholar
[13] Zeller, R., J. Phys. F: Met. Phys. 17, 2123 (1987).CrossRefGoogle Scholar
[14] Coleridge, P.T., J. Phys. F: Met. Phys. 2, 1016 (1972).Google Scholar
[15] Ek, J. van and Lodder, A., Solid State Commun. 73, 373 (1990).Google Scholar
[16] Holzwarth, N.A.M. and Lodder, M.J.G., Phys. Condens. Matter 19, 1961 (1975).CrossRefGoogle Scholar
[17] Oppeneer, P.M. and Lodder, A., J. Phys. F: Met. Phys. 17, 1885 (1987).CrossRefGoogle Scholar
[18] Oppeneer, P.M. and Lodder, A., J. Phys. F: Met. Phys. 17, 1901 (1987).Google Scholar
[19] Mertig, I., Mrosan, E., and Ziesche, P., Multiple Scattering Theory of Point Defects in Metals: Electronic properties, Teubner-Verlag, Leipzig (1987).Google Scholar
[20] Fert, A., J. Phys. C: Solid St. Phys. 2, 1784 (1969).Google Scholar
[21] Bourquart, A., Daniel, E. and Fert, A., Phys. Lett. 26A, 260 (1968).Google Scholar
[22] Monod, P., PhD Thesis Orsay(1968).Google Scholar
[23] Jaoul, O. and Campbell, I.A., J. Phys. F: Met. Phys. 5, L69 (1975).Google Scholar
[24] Mertig, I., Mrosan, E. and Schopke, R., J. Phys. F: Met. Phys. 12, 1689 (1982).Google Scholar
[25] Hohenberg, P.C. and Kohn, W., Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
[26] Kohn, W. and Sham, L.J., Phys. Rev. 140, A1133 (1965).Google Scholar
[27] Barth, U.von and Hedin, L., J. Phys. C: Solid St. Phys. 5, 1629 (1972).Google Scholar
[28] Moruzzi, V.L., Janak, J. and Williams, A.R., Calculated Electronic Properties of Metals, Pergamon, New-York (1978)Google Scholar
[29] Lehmann, G. and Taut, M., phys. stat. sol. (b) 54, 469 (1972).Google Scholar
[30] Hugel, J., J. Phys. F: Met. Phys. 3, 1723 (1973).Google Scholar
[31] Ross, R.N., Price, D.C. and Williams, Gwyn, J. Mag. Mag. Mat. 10, 59 (1979).Google Scholar
[32] Durand, J., PhD Thesis StraBbourg(1973).Google Scholar
[33] Beylin, V.M., Zeynalov, T.I., Rogelberg, I.L., and Cherenkov, V.A., Fiz. Met. Metalloved. 46, 1083 (1978).Google Scholar
[34] Arajs, S., Chessin, H. and Colvin, R.V., phys. stat. sol. (b) 7, 1009 (1964).Google Scholar
[35] Greig, D. and Rowlands, J.A., Proc. LT-13 (Boulder,Colo), p. 233 (1974).Google Scholar
[36] Cadeville, M.C. and Durand, J., Solid State Commun. 6, 399 (1968).Google Scholar