Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T21:02:53.107Z Has data issue: false hasContentIssue false

Ab-initio modeling of Fe-Mn based alloys and nanoclusters

Published online by Cambridge University Press:  27 September 2011

Peter Entel
Affiliation:
Faculty of Physics and CeNIDE, University of Duisburg-Essen, 47048 Duisburg, Germany
Denis Comtesse
Affiliation:
Faculty of Physics and CeNIDE, University of Duisburg-Essen, 47048 Duisburg, Germany
Heike C. Herper
Affiliation:
Faculty of Physics and CeNIDE, University of Duisburg-Essen, 47048 Duisburg, Germany
Markus E. Gruner
Affiliation:
Faculty of Physics and CeNIDE, University of Duisburg-Essen, 47048 Duisburg, Germany
Mario Siewert
Affiliation:
Faculty of Physics and CeNIDE, University of Duisburg-Essen, 47048 Duisburg, Germany
Sanjubala Sahoo
Affiliation:
Faculty of Physics and CeNIDE, University of Duisburg-Essen, 47048 Duisburg, Germany
Alfred Hucht
Affiliation:
Faculty of Physics and CeNIDE, University of Duisburg-Essen, 47048 Duisburg, Germany
Get access

Abstract

New methods in steel design and basic understanding of the novel materials require large scale ab initio calculations of ground state and finite temperature properties of transition metal alloys. In this contribution we present ab initio modeling of the structural and magnetic properties of XYZ compounds and alloys where X, Y = Mn, Fe, Co Ni and Z = C, Si with emphasis on the Fe-Mn steels. The optimization of structural and magnetic properties is performed by using different simulation tools. In particular, the finite-temperature magnetic properties are simulated using a Heisenberg model with magnetic exchange interactions from first-principles calculations. Part of the calculations are extended to the nanoparticle range showing how ferromagnetic and antiferromagnetic trends influence the nucleation, morphologies and growth of Fe-Mn-based nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. High manganese steels with a single phase austenite or multiphase with a large volume fraction of austenite show plastic deformation characteristics of technological importance which comprise TRIP (transformation induced plasticity), TWIP (twinning induced plasticity) and SIP (shear-band plasticity): O. Grässel, L. Krüger, G. Frommeyer and L. W. Meyer, Int. J. Plasticity 16, 1391 (2000); G. Frommeyer and U. Brüx, Steel Res. Int. 77, 627(2006).Google Scholar
2. Pepperhoff, W. and Acet, M., Constitution and Magnetism of Iron and its Alloys (Springer, Berlin, 2001).Google Scholar
3. Acet, M., Schneider, T., Gehrmann, B. and Wassermann, E. F., J. Physique IV (France) 5, C8379 (2003).Google Scholar
4. Herper, H. C., Hoffmann, E. and Entel, P., J. Physique IV (France) 7, C571 (1997).Google Scholar
5. Wassermann, E. F., Invar: Moment-volume instabilities in transition metals and alloys, in Ferromagnetic Materials, vol. 5, edited by Buschow, K. H. J. and Wohlfarth, E. P. (Elsevier, Amsterdam, 1990), p. 237.Google Scholar
6. Moruzzi, V. L., Marcus, P. M., Schwarz, K. and Mohn, P., Phys. Rev. B 34, 1784 (1986).Google Scholar
7. Massalski, T. B. and Laughlin, D. E., CALPHAD 33, 3 (2009).Google Scholar
8. Kübler, J., Höck, K.-H., Sticht, J. and Williams, A. R., J. Appl. Phys. 63, 3482 (1988).Google Scholar
9. Johnson, D. D., Pinski, F. J. and Stocks, G. M., J. Appl. Phys. 63, 3490 (1988).Google Scholar
10. Kulikov, N. I. and Demangeat, , Phys. Rev. B 55 (1997).Google Scholar
11. Schulthess, T. C., Butler, W. H., Stocks, G. M., Maat, S. and Mankey, G. J., J. Appl. Phys. 85, 4842 (1999).Google Scholar
12. Spisák, D. and Hafner, J., Phys. Rev. B 61, 11569 (2000).Google Scholar
13. Abrikosov, I. A., Eriksson, O., Söderlind, P., Skriver, H. L. and Johansson, B., Phys. Rev. B 51, 1058 (1995).Google Scholar
14. Schröter, M., Ebert, H., Akai, H., Entel, P., Hoffmann, E. and Reddy, G. G., Phys. Rev. B 52, 188 (1995).Google Scholar
15. Hickel, T., Dick, A., Grabowski, B., Körnemann, F. and Neugebauer, J., Steel Res. Int. 80, 4 (2009).Google Scholar
16. Witusiewicz, V. T., Sommer, F. and Mittemeijer, E. J., J. Phase Equil. Diff. 25, 346 (2004).Google Scholar
17. Music, D., Takahashi, T., Vitos, L., Asker, C., Abrikosov, I. A. and Schneider, J. M., Appl. Phys. Lett. 91, 191904 (2007).Google Scholar
18. Gebhardt, T., Music, D., Hallstedt, B., Ekholm, M., Abrikosov, I. A., Vitos, L. and Schneider, J. M., J. Phys.: Condens. Matter 22, 295402 (2010).Google Scholar
19. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
20. Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).Google Scholar
21. Ebert, H., Lecture Notes in Physics, vol. 50, edited by Dreysse, H. (Springer, Berlin 2000), p. 191; http://olymp.cup.uni-muenchen.de/ak/ebert/SPRKKR.Google Scholar
22. Hallstedt, B., Djurovic, D., von Appen, J., Dronskowski, R., Dick, A., Körmann, F., Hickel, T. and Neugebauer, J., CALPHAD 34, 129 (2010).Google Scholar
23. von Appen, J., Eck, B. and Dronskowski, R., J. Comput. Chem. 31, 2620 (2010).Google Scholar
24. Jiang, D. E. and Carter, E. A., Phys. Rev. B 67, 214103 (2003).Google Scholar
25. Först, C. J., Slycke, J., Van Vliet, K. J. and Yip, S., Phys. Rev. Lett. 96, 175501 (2006).Google Scholar
26. Becquart, C. S., Raulot, J. M., Bencteux, G., Domain, C., Perez, M., Garruchet, S. and Nguyen, H., Comput. Mater. Sci. 40, 119 (2007).Google Scholar
27. Lau, T. T., Först, C. J., Lin, X., Gale, J. D., Yip, S. and Van Vliet, K. J., Phys. Rev. Lett. 98, 215501 (2007).Google Scholar
28. Rezende, J., Siquieri, R., Emmerich, H., Lob, A., Senk, D., Djuroviv, D., Hallstedt, B., Richter, S. and Mayer, J., Steel Res. Int. 80, 609 (2009).Google Scholar
29. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
30. Entel, P., Buchelnikov, V. D., Khovilo, V. V., Zayak, A. T., Adeagbo, W. A., Gruner, M. E., Herper, H. C. and Wassermann, E. F., J. Phys. D: Appl. Phys. 39, 865 (2006).Google Scholar
31. van Humbeeck, J. and Delaey, L., A comparative review of the (potential) shape memory alloys, in The Martensitic Transformation in Science and Technology, edited by Hornbogen, E. and Jost, N. (DGM, Oberursel, 1989), p. 15; J. Physique (France) 4, 135 (1994).Google Scholar
32. Olson, G. B. and Cohen, M., Metall. Trans. A 7, 1897 (1976).Google Scholar
33. Rollmann, G., Sahoo, S., Hucht, A. and Entel, P., Phys. Rev. B 78, 134401 (2008).Google Scholar