Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T05:58:07.649Z Has data issue: false hasContentIssue false

8 MeV Proton Irradiation Damage and Its Recovery by Annealing on Single-Crystalline Zinc Oxide Crystals

Published online by Cambridge University Press:  13 April 2012

Kazuto Koike
Affiliation:
Nanomaterials Microdevices Research Center, Osaka Institute of Technology, Ohmiya, Asahiku, Osaka 535-8585, Japan
Ryugo Fujimoto
Affiliation:
Nanomaterials Microdevices Research Center, Osaka Institute of Technology, Ohmiya, Asahiku, Osaka 535-8585, Japan
Ryota Wada
Affiliation:
Nanomaterials Microdevices Research Center, Osaka Institute of Technology, Ohmiya, Asahiku, Osaka 535-8585, Japan
Shigehiko Sasa
Affiliation:
Nanomaterials Microdevices Research Center, Osaka Institute of Technology, Ohmiya, Asahiku, Osaka 535-8585, Japan
Mitsuaki Yano
Affiliation:
Nanomaterials Microdevices Research Center, Osaka Institute of Technology, Ohmiya, Asahiku, Osaka 535-8585, Japan
Shun-ichi Gonda
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-city, Osaka 567-0047, Japan
Ryoya Ishigami
Affiliation:
The Wakasa Wan Energy Research Center, Nagatani, Tsuruga-city, Fukui 914-0192, Japan.
Kyo Kume
Affiliation:
The Wakasa Wan Energy Research Center, Nagatani, Tsuruga-city, Fukui 914-0192, Japan.
Get access

Abstract

II-VI compound semiconductor ZnO has a potential for high radiation hardness since large threshold displacement energy of constituent atoms can be expected due to the small unit-cell volume and large bandgap energy of 3.37 eV. In order to study the radiation hardness, singlecrystalline c-axis-oriented O-polar ZnO films with and without two-dimensional electron gas, a Zn-polar ZnO bulk crystal, and a Ga-polar GaN bulk crystal for comparison, were irradiated by an 8 MeV proton beam using a tandem-type accelerator. The radiation damage increased the electrical resistance and decreased the photoluminescence (PL) intensity of these samples with the increase of proton fluence over specific threshold values. In agreement with the expectation, ZnO samples were revealed to have superior radiation hardness; the threshold fluences for the deterioration of PL intensity were 3×1013 p/cm2 for the GaN bulk crystal, 2×1014 p/cm2 for the ZnO bulk crystal, and 5×1014 p/cm2 for the two ZnO films, in accordance with the order of the threshold fluences for the electrical resistance increase. The effect of post-irradiation annealing was also studied for these damaged bulk crystals; both electrical and optical properties of the ZnO bulk crystal were almost recovered to the pre-irradiation values, however, only the electrical properties of the GaN bulk crystal were recovered, by the annealing up to 700°C. Such a rapid recovery of the ZnO bulk crystal indicates the easy annihilation of Zn vacancy complexes acting as non-radiative centers by the recombination with interstitial Zn atoms. Since the migration barrier height energy of interstitial Zn atoms is known to be so small that it might occur even at room temperature, we ascribed the superior radiation hardness of ZnO crystals to the restoration of damage-induced defects by a self-annealing effect during irradiation.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Janesick, J., Elliott, T. and Pool, F., IEEE Trans. Nucl. Sci. 36, 572578 (1989).Google Scholar
2. Dale, C., Marshall, P., Cummings, B., Shamey, L. and Holland, A., IEEE Trans. Nucl. Sci. 40, 13721379 (1993).Google Scholar
3. Hopkinson, G. R., Dale, C. J. and Marshall, P. W., IEEE Trans. Nucl. Sci. 43, 614627 (1996).Google Scholar
4. Jun, I., Xapsos, M. A., Messenger, S. R., Burke, E. A., Walters, R. J., Summers, G. P. and Jordan, T., IEEE Trans. Nucl. Sci. 50, 19241928 (2003).Google Scholar
5. Fujioka, K., Radiological Sciences 40, 123131 (1997).Google Scholar
6. Shao, X., Papadopoulos, K. and Sharma, A. S., J. Geophysical Research 114, A07214–1-A07214–10 (2009).Google Scholar
7. Hopkinson, G. R., Proc. of the 7th International Workshop on Radiation Effects on Semiconductor Devices for Space Application, Oct.1618, 2006.Google Scholar
8. Khanna, S. M., Estan, D., Erhardt, L. S., Houdayer, A., Carlone, C., Nedelcescu, A. I., Messenger, S. R., Walters, R. J., Summers, G. P., Warner, J. H. and Jun, I., IEEE Trans. Nucl. Sci. 51, 27292735 (2004).Google Scholar
9. Messenger, S. R., Burke, E. A., Summers, G. P., Walters, R. J. and Warner, J. H., IEEE Trans. Nucl. Sci. 52, 22762280 (2005).Google Scholar
10. Warner, J. H., Messenger, S. R., Walters, R. J. and Summers, G. P., IEEE Trans. Nucl. Sci. 52, 26782682 (2005).Google Scholar
11. Warner, J. H.. Messenger, S. R., Walters, R. J., Summers, G. P., Romero, M. J. and Burke, E. A., IEEE Trans. Nucl. Sci. 54, 19611968 (2007).Google Scholar
12. Auret, F. D., Goodman, S. A., Hayes, M., Legodi, M. J., van Laarhoven, H. A. and Look, D. C., Appl. Phys. Lett. 79, 30743076 (2001).Google Scholar
13. Khan, A., Yamaguchi, M., Dharmaso, N., Bourgoin, J., Ando, K. and Takamoto, T., Jpn. J. Appl. Phys. 41, 12411246 (2002).Google Scholar
14. Polyakov, A. Y., Smirnov, N. B., Govorkov, A. V., Kozhukhova, E. A., Vdovin, V. I., Ip, K., Overberg, M. E., Heo, Y. W., Norton, D. P., Pearton, S. J., Zavada, J. M. and Dravin, V. A., J. Appl. Phys. 94, 28952900 (2003).Google Scholar
15. Luo, Z., Chen, T., Ahyi, A. C., Sutton, A. K., Haugerud, B. M., Cressler, J. D., Sheridan, D. C., Williams, J. R., Marshall, P. W. and Reed, R. A., IEEE Trans. Nucl. Sci. 51, 37483752 (2004).Google Scholar
16. Moon, Y. K., Moon, D. Y., Lee, S. and Park, J. W., J. Korean Phys. Soc. 54, 10591063 (2009).Google Scholar
17. Barry, A. L., Lchmann, B., Fritsch, D. and Bräunig, D., IEEE Tran. Nucl. Sci. 38, 11111115 (1991).Google Scholar
18. Nedelcescu, A. I., Carlone, C., Houdayer, A., von Bardeleben, H. J., Cantin, J. L. and Raymond, S., IEEE Trans. Nucl. Sci. 49, 27332738 (2002).Google Scholar
19. Kucheyev, S. O., Deenapanray, P. N. K., Jagadish, C., Williams, J. S., Yano, M., Koike, K., Sasa, S., Inoue, M. and Ogata, K., Appl. Phys. Lett. 81, 33503352 (2002).Google Scholar
20. Look, D. C., Reynolds, D. C., Hemsky, J. W., Jones, R. L. and Sizelove, J. R., Appl. Phys. Lett. 75, 811813 (1999).Google Scholar
21. Look, D. C., Reynolds, D. C., Fang, Z. Q., Hemsky, J. W., Sizelove, J. R. and Jones, R. L., Mater. Sci. Eng. B 66, 3032 (1999).Google Scholar
22. Tuomisto, F., Look, D. C. and Farlow, G. C., Physica B 401/402, 604608 (2007).Google Scholar
23. Saarinen, K., Hautakangas, S. and Tuomisto, F., Phys. Scr. T 126, 105109 (2006).Google Scholar
24. Yano, M., Koike, K., Sasa, S. and Inoue, M.: in Zinc Oxide, Bulk, Thin Film and Nanostructures , ed. Jagadish, C. and Pearton, S. J. (Elsevier, Amsterdam, 2006) p. 372.Google Scholar
25. Yano, M., Hashimoto, K., Fujimoto, K., Koike, K., Sasa, S., Inoue, M., Uetsuji, Y., Ohnishi, T. and Inaba, K., J. Crystal Growth 301/302, 353357 (2007).Google Scholar
27. Leon, R., Swift, G. M., Magness, B., Taylor, W. A., Tang, Y. S., Wang, K. L., Dowd, P. and Zhang, Y. H., Appl. Phys. Lett. 76, 20742076 (2000).Google Scholar
28. Gonda, S., Tsutsumi, H., Ishigami, R., Kume, K., Ito, Y., Ishida, M. and Arakawa, Y., Appl. Surf. Sci. 255, 676678 (2008).Google Scholar
29. Burlacu, A., Ursaki, V. V., Skuratov, V. A., Lincot, D., Pauporte, T., Elbelghiti, H., Rusu, E. V. and Tiginyanu, I. M., Nanotechnology 19, 215714-1–215714-8 (2008).Google Scholar
30. Look, D. C., Hemsky, J. W., Sizelove, J. R., Phys. Rev. Lett. 82, 25522555 (1999).Google Scholar
31. Kohan, A. F., Ceder, G., Morgan, D., Van de Walle, C. G., Phys. Rev. B 61, 1501915027 (2000).Google Scholar
32. Limpijumnong, S. and Van de Walle, C. G., Phys. Rev. B 69, 035207–1-035207-11 (2004).Google Scholar
33. Zhao, J. L., Zhang, W., Li, X. M., Feng, J. W. and Shi, X., J. Phys.: Condens. Matter 18, 14951508 (2006).Google Scholar
34. Janotti, A. and Van de Walle, C. G., Phy. Rev. B 76, 165202–1-165202-21 (2007).Google Scholar
35. Tuomisto, F., Ranki, V., Saarinen, K. and Look, D. C., Phys. Rev. Lett. 91, 205502–1-205502-4 (2003).Google Scholar
36. Tuomisto, F., Saarinen, K., Look, D. C. and Farlow, G. C., Phys. Rev. B 7, 085206–1-085206-11 (2005).Google Scholar
37. Tuomisto, F., Ranki, V., Look, D. C. and Farlow, G. C., Phys. Rev. B 76, 165207–1-165207-10 (2007).Google Scholar
38. Koida, T., Chichibu, S. F., Uedono, A., Tsukazaki, A., Kawasaki, M., Sota, T., Segawa, Y. and Koinuma, H., Appl. Phys. Lett. 82, 532534 (2003).Google Scholar
39. Chichibu, S. F., Uedono, A., Onuma, T., Sota, T., Haskell, B. A., DenBaars, S. P., Speck, J. S. and Nakamura, S., Appl. Phys. Lett. 86, 021914–1-021914-3 (2005).Google Scholar
40. Chichibu, S. F. Onuma, T., Kubota, M., Uendono, A., Sota, T., Tsukazaki, A., Ohtomo, A. and Kawasaki, M., J. Appl. Phys. 99, 093505–1-093505-6 (2006).Google Scholar
41. Kucheyev, S. O., Boudinov, H., Williams, J. S., Jagadish, C. and Li, G., J. Appl. Phys. 91, 41174120 (2002).Google Scholar