Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T06:58:30.418Z Has data issue: false hasContentIssue false

AB-Initio Calculations Of Second Order Optical Response Functions In Wurtzite GAN and ALN, And Their Short Period Superlattices

Published online by Cambridge University Press:  10 February 2011

Sergey N. Rashkeev
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, OH 44106–7079
Walter R. L. Lambrecht
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, OH 44106–7079
B. Segall
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, OH 44106–7079
Get access

Abstract

Second harmonic generation coefficients were calculated from first-principles for wurtzite GaN, AlN and the (0001) superlattices (SL) (GaN)n,(AlN)n for n = 2, 4. The effects of the LDA gap underestimate are discussed. The SLs are found to have a strongly reduced static SHG response. The frequency dependent SHG coefficients are found to be sensitive to the SL band structure and to differ significantly form a superposition of the bulk components, indicating a strong intermixing of the bands.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Levine, B. F., Phys. Rev. B 7, 2600 (1973).Google Scholar
2. Chen, J., Levine, Z. H., and Wilkins, J. W., Appl. Phys. Lett. 66, 1129 (1995).Google Scholar
3. Miragliotta, J., Wickenden, D. K., Kistenmacher, T. J., and Bryden, W. A., J. Opt. Soc. Am. B 10, 1447 (1993).Google Scholar
4. Miragliotta, J. and Wickenden, D. K., Phys. Rev. B 50, 14960 (1994).Google Scholar
5. Stroud, D. and Hui, P. M., Phys. Rev. B 37, 8719 (1988).Google Scholar
6. Bernardini, F., Fiorentini, V., and Vanderbilt, D., in III-V Nitrides, ed. Ponce, F.A., Moustakas, T. D., Akasaki, I., Monemar, B. A., Mater. Res. Soc. Symp. Proc. Vol.449, p. 923 (MRS, Pittsburgh 1997).Google Scholar
7. Miragliotta, J. and Wickenden, D. K., Phys. Rev. B 53, 1388 (1996).Google Scholar
8. Rashkeev, S. N., Lambrecht, W. R. L., and Segall, B., Phys. Rev. B (1998), to be published, see xxx.lanl.gov/abs/cond-mat/9709185, xxx.lanl.gov/abs/cond-mat/9709319.Google Scholar
9. Aversa, C. and Sipe, J. E., Phys. Rev. B 52, 14636 (1995).Google Scholar
10. Sipe, J. E. and Ghahramani, E., Phys. Rev. B 48, 11705 (1993).Google Scholar
11. Hughes, J. L. P. and Sipe, J. E., Phys. Rev. B 53, 10751 (1996).Google Scholar
12. Levine, Z. H. and Allan, D. C., Phys. Rev. B 43, 4187 (1991).Google Scholar
13. Christensen, N. E., Phys. Rev. B 30, 5753 (1984).Google Scholar
14. Anisimov, V. I., Zaanen, J., and Andersen, O. K., Phys. Rev B 44, 943 (1991)Google Scholar
15. Fujii, Y., Yoshida, S., Misawa, S., Maekawa, S., and Sakudo, T., Appl. Phys. Lett. 31, 815 (1977).Google Scholar
16. Baldereschi, A., Baroni, S., and resta, R., Phys. Rev. Lett. 61, 734 (1988).Google Scholar