Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T10:44:45.347Z Has data issue: false hasContentIssue false

ab-initio modelling of Mg:H interstitial solid solutions

Published online by Cambridge University Press:  26 February 2011

M. Messina
Affiliation:
Ente Nuove Tecnologie, Energia e Ambiente (ENEA), Unità Materiali e Nuove Tecnologie, Centro Ricerche Casaccia, 00100 Roma A. D. (Italy)
F. Cleri
Affiliation:
Ente Nuove Tecnologie, Energia e Ambiente (ENEA), Unità Materiali e Nuove Tecnologie, Centro Ricerche Casaccia, 00100 Roma A. D. (Italy)
M. Volpe
Affiliation:
Ente Nuove Tecnologie, Energia e Ambiente (ENEA), Unità Materiali e Nuove Tecnologie, Centro Ricerche Casaccia, 00100 Roma A. D. (Italy)
Get access

Abstract

We studied the thermodynamics of interstitial Mg:H solid solutions by means of ab-initio electronic structure calculations. Soft pseudopotentials (Troullier-Martins) with non linear core correction and Perdew-Burke-Ernzerhof GGA exchange-correlation functional were employed, in the framework of a DFT plane-wave scheme. We inserted increasing concentrations of interstitial H atoms in the hcp Mg lattice, in both tetrahedral and octahedral positions. We calculated the heat of solution and the volume variation as a function of H concentration. Although the difference in Gibbs free energy is positive at any H concentration above 10−6 at.%, our results show that the enthalpic contribution is negative at any H concentration, therefore locally favouring H clustering. This reflects the existence of a driving force for the subsequent formation of the hydride. The volume deformation was characterized, finding that octahedreal interstitials have a minor effect, while tetrahedral interstitial can induce very large local expansion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Amankwah, K. A. G., Noh, J. S., Schwarz, J. A., Int. J. Hydr. Energy 14, 437 (1989)Google Scholar
2. Hynek, S., Fuller, W., Bentley, G., Int. J. Hydr. Energy 22, 601 (1997)Google Scholar
3. Gunnarson, O., Jones, R. O., Rev. Mod. Phys. 61, 690 (1989).Google Scholar
4. Perdew, J. P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
5. Troullier, N., Martins, J. L., Phys. Rev. B 43, 3223 (1989).Google Scholar
6. Fuchs, M., Scheffler, M., Comp. Phys. Comm. 119, 73 (1999).Google Scholar
7. Gonze, X., Beuken, J.-M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.-M., Sindic, L., Verstraete, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, Ph., Raty, J.-Y. and Allan, D.C., Comp. Mat. Sci. 25, 478 (2002).Google Scholar
8. Kittel, C., Introduction to Solid State Physics, J. Wiley, New York 1966.Google Scholar
9. Monkhorst, H. J., Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
10. Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., Wagman, D. G., Selected Values of the Thermodynamic Properties of the Alloys, American Society for Metals, Metals Park, 1973.Google Scholar