Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T20:09:28.388Z Has data issue: false hasContentIssue false

Activated Pulsed Metalorganic Chemical Vapor Deposition of Ge2Sb2Te5 Thin Films Using Alkyl Precursors

Published online by Cambridge University Press:  01 February 2011

Denis Reso
Affiliation:
denis.reso@ovgu.de, Otto-von-Guericke-University, Magdeburg, Germany
Mindaugas Silinskas
Affiliation:
mindaugas.silinskas@ovgu.de, Otto-von-Guericke-University, Magdeburg, Germany
Bodo Kalkofen
Affiliation:
bodo.kalkofen@ovgu.de, Otto-von-Guericke-University, Magdeburg, Germany
Marco Lisker
Affiliation:
lisker@ihp-microelectronics.com, Innovations for High Performance Microelectronics (IHP), Frankfurt (Oder), Germany
Edmund P. Burte
Affiliation:
edmund.burte@e-technik.uni-magdeburg.de, Otto-von-Guericke-University, Magdeburg, Germany
Get access

Abstract

Ge-Sb-Te (GST) thin films were deposited by chemical vapor deposition (CVD) and hot-wire chemical vapor deposition (HW CVD). Several precursor sets (tetraethylgermanium - trimethylantimony - dimethyltellurium (TEGe-TMSb-DMTe), tetraisopropylgermanium - triisopropylantimony - di-tertiarybutyltellurium (TiPGe-TiPSb-DtBTe) and tetraallylgermanium - triisopropylantimony - diisopropyltellurium (TAGe-TiPSb-DiPTe)) were tested for CVD. For the TEGe-TMSb-DMTe precursor set tellurium and germanium could be detected in the films for all deposition temperatures investigated, while Sb was found only in the films deposited at elevated temperature higher than 550 °C. The deposition temperature could be reduced by using two other precursor sets (TiPGe-TiPSb-DtBTe and TAGe-TiPSb-DiPTe). The Ge content, however, could not be sufficiently increased to obtain stoichiometric Ge2Sb2Te5 films. Therefore, the hot wire or catalytic method was applied to improve the decomposition of the precursors. In this case, the desired composition (e.g. Ge2Sb2Te5) was obtained at each investigated temperature by adjusting dosing and deposition parameters. Additionally, film roughness (as low as 2 nm) and deposition rates could be optimized by adjusting deposition temperature and pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Burr, G.W. Kurdi, B.N. Scott, J.C. Lam, C.H. Gopalakrishnan, K. Shenoy, R.S. IBM J. Res. & Dev. 52, 449 (2008).Google Scholar
[2] Wuttig, M. Lusebrink, D. Wamwangi, D. Welnic, W. Gillessen, M. Dronskowski, R. Nature Mater. 6, 122 (2007).Google Scholar
[3] Longo, M. Salicio, O. Wiemer, C. Fallica, R. Molle, A. Fanciulli, M. Giesen, C. Seitzinger, B., Bauman, P.K. Heuken, M. Rusworth, S. J. Cryst. Growth 310, 5053 (2008).Google Scholar
[4] Choi, K.J. Yoon, S.M. Lee, N.Y. Lee, S.Y. Park, Y.S. Yu, B.G. Ryu, S.O. Thin Solid Films 516, 8810 (2008).Google Scholar
[5] Lee, J. Choi, S. Lee, C. Kang, Y. Kim, D. Appl. Surf. Sci. 253, 3969 (2007).Google Scholar
[6] Abrutis, A. Plausinaitiene, V. Skapas, M. Wiemer, C. Salicio, O. Pirovano, A. Varesi, E. Rushworth, S., Gawelda, W. Siegel, J. Chem. Mater. 20, 3557 (2008).Google Scholar
[7] Kim, R.Y. Kim, H.G. Yoon, S.G. Appl. Phys. Lett. 89, 102107 (2006).Google Scholar
[8] Ritala, M. Pore, V. Hatanpaa, T. Heikkila, M. Leskela, M. Mizohata, K. Schrott, A. Raoux, S. Rossnagel, S.M. Microelectron. Eng. 86, 1946 (2009).Google Scholar
[9] Reso, D. Silinskas, M. Lisker, M. Kalkofen, B. Burte, E.P. Integr. Ferroelectr. 110, 87 (2009).Google Scholar
[10] McAllister, T. J. Cryst. Growth 96, 522 (1989).Google Scholar