Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T02:29:51.272Z Has data issue: false hasContentIssue false

Adhesion of Lipid Membranes Mediated by Electrostatic and Specific Interactions

Published online by Cambridge University Press:  15 February 2011

Christian W. Maier
Affiliation:
Lehrstuhl für Biophysik, E22, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
Almuth Behrisch
Affiliation:
Lehrstuhl für Biophysik, E22, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
Annette Kloboucek
Affiliation:
Lehrstuhl für Biophysik, E22, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
Rudolf Merkel
Affiliation:
Lehrstuhl für Biophysik, E22, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
Get access

Abstract

We used the micropipet aspiration technique for a study of biomembrane adhesion. Adhesion was caused by contact site A, a highly specific cell adhesion molecule, reconstituted in lipid vesicles of DOPC with 5 %(mol/mol) DOPE-PEG2000. We found adhesion and subsequent receptor aggregation in the contact zone. Additionally, electrostatic modulation of membrane adhesion was studied. Whereas addition of the negatively charged lipid SOPS to the lecithin (SOPC) host membrane suppressed adhesion due to electrostatic repulsion, a positively charged lipid (DOTAP) was surprisingly ineffective. This might be due to either phase separation of the mixture or DOTAP changing other membrane properties as bending stiffness and the Hamaker constant.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. Molecular Biology of the Cell, 3rd edition (Garland, New York, 1994), pp. 949994.Google Scholar
[2] Evans, E., in Handbook of Biological Physics, Volume 1, edited by Lipowsky, R. and Sackmann, E. (Elsevier, Amsterdam, 1995), pp. 723754.Google Scholar
[3] Gerisch, G., in Cellular and molecular aspects of developmental biology, edited by Fougereau, M. and Stora, R. (Elsevier, Amsterdam, 1986), pp. 4766.Google Scholar
[4] Faix, J., Gerisch, G., and Noegel, A. A., The EMBO J. 9, 2709 (1990).Google Scholar
[5] Faix, J., Gerisch, G., and Noegel, A. A., J. of Cell Sci. 102, 203 (1992).Google Scholar
[6] Evans, E., and Needham, D., J. Phys. Chem. 91, 4219 (1987).Google Scholar
[7] Evans, E. A., Methods in Enzymology 173, 3 (1989).Google Scholar
[8] Needham, D., Methods in Enzymology 220, 111 (1993).Google Scholar
[9] Stein, T., and Gerisch, G., Analyt. Biochem. 237, 252 (1996).Google Scholar
[10] Watts, D. J., and Ashworth, J. M., Biochem. J. 119, 171 (1970).Google Scholar
[11] Angelova, M. I., Soleau, F., Meleard, P., Faucon, J. F., and Bothorel, P., Prog. Colloid. Polym. Sci. 89, 127 (1992).Google Scholar
[12] Evans, E. A., Biophys. J. 31, 425 (1980).Google Scholar
[13] Evans, E., and Metcalfe, M., Biophys. J. 46, 423 (1984).Google Scholar
[14] Evans, E., Biophys. J. 48, 175 (1985).Google Scholar
[15] Noppl-Simson, D. A. and Needham, D., Biophys. J. 70, 1391 (1996).Google Scholar
[16] Parsegian, V. Adrian, and Gingell, D., Biophys. J. 12, 1192 (1972).Google Scholar