Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T06:56:36.976Z Has data issue: false hasContentIssue false

Amorphous Si, Crystallization And Melting

Published online by Cambridge University Press:  15 February 2011

J. M. Poate*
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Recent experiments dealing with the thermodynamics of crystallization and melting of amorphous Si are reviewed. differential scanning calorimetry measurements give the heat of crystallization of implanted, amorphous Si to be 11.3±t.8 kJ/mole. Gibbs free energy calculation based on these measurements indicate that amorphous Si melts at a temperature of 1460°K compared to the crystalline value of 1685°K. Evidence for this reduced melting temperature also comes from rapid heating measurements using a) structural information after solidification and b) dynamic conductance measurements during the melt. Solid phase epitaxial regrowth experiments which apparently do not show such a depression in amorphous melting temperature will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bagley, B. G. and Chen, H. S. in “Laser Solid Interactions and Laser Processing” ed.Ferris, S. D., Leamy, H. J. and Poate, J. M. (AIP Conf. Proc. No 50) p. 97 (1978).Google Scholar
[2]Spaepen, F. and Turnbull, D. in “Laser Solid Interactions and Laser Processing” ed. Ferris, S. D., Leamy, H. J. and Poate, J. M. (AIP Conf. Proc. No 50) p. 73 (1978).Google Scholar
[3]Olson, G. L., Kokorowski, S. A., Roth, J. A. and Hess, L. D., these proceedings and Kokorowski, S. A., Olson, G. L., and Hess, L. D., J. Appl. Phys. 53, (1982) 921.Google Scholar
[4]Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M. and Jacobson, D. C., to be published.Google Scholar
[5]Anderson, H. H. and Ziegler, J. F., “Hydrogen Stopping Powers and Ranges in All Elements”Pergamon, Oxford 1977.Google Scholar
[6]Chen, H. S. and Turnbull, D., J. Appl. Phys. 40 (1969) 4212.Google Scholar
[7]Csepregi, L., Kennedy, E. F., Mayer, J. W. and Sigmon, T. W., J. Appl. Phys. 49 (1978) 3906.Google Scholar
[8]Fan, J. C. C. and Anderson, H., J. Appl. Phys. 52 (1981) 4003.Google Scholar
[9]Spaepen, F., Phil. Mag. 30 (1974) 417.Google Scholar
[10]Baeri, P., Foti, G., Poate, J. M. and Cullis, A. G., Phys. Rev. Lett. 45 2036 (1980).Google Scholar
10aBaeri, P., Foti, G., Poate, J. M. and Cullis, A. G. in Materials Research Society Symposia Proc. ed. by Gibbons, J. F., Hess, L. D. and Sigmon, T. W. 1 (1981) 39.Google Scholar
[11]Baeri, P. in Materials Research Society Symposia Proc. ed. by Appleton, B. R. and Celler, G. K., 4 (1982) 151.Google Scholar
[12]Kokorowski, S. A., Olson, G. L., Roth, J. A. and Hess, L. D., Phys. Rev. Lett. 48 (1982) 498.Google Scholar
12aKokorowski, S. A., Olson, G. L., Roth, J. A. and Hess, L. D., Materials Research Society Proc.4 (1982) 195.Google Scholar
[13]Thompson, M. O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Cullis, A. G., Chew, N. G., Webber, H. C., Jacobson, D. C. and Poate, J. M., to be published.Google Scholar
[14]Thompson, M. O. and Galvin, G. J., these proceedings.Google Scholar
[15]Cullis, A. G., Webber, H. C., Chew, N. G., private communications.Google Scholar
[16]Cullis, A. G. these proceedings.Google Scholar
[17]Turnbull, D. in Materials Research Society Symposium, Proc. ed.Picraux, S. T. and Choyke, W. J., North Holland, Amsterdam, 7 (1982) 103.Google Scholar