Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T06:46:50.324Z Has data issue: false hasContentIssue false

Analysis of the Strain Profile in Thin Au/Ni Multilayers by X-Ray Diffraction

Published online by Cambridge University Press:  22 February 2011

J. Chaudhuri
Affiliation:
Mech. Eng. Dept., National Inst. for Aviation Res., The Wichita State University, Wichita, KS 67208
V. Gondhalekar
Affiliation:
Mech. Eng. Dept., National Inst. for Aviation Res., The Wichita State University, Wichita, KS 67208
A. F. Jankowski
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

A dynamical x-ray diffraction theory has been used to obtain microscopic strain profiles in thin Au/Ni multilayers. Depth profiles of strains in these multilayers, with repeat periodicities varying from 0.82 nm to 9.0 nm, are obtained by an iterative fitting of the calculated diffraction pattern with the experimental one. Interfacial coherency is found to play an important role in understanding the origin of the supermodulus effect in metallic multilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, W. M. C., Tsakalakos, T. and Hillard, J. E., J. Appl. Phys. 48 876 (1977).CrossRefGoogle Scholar
2. Hove, M. A. and Tong, S. Y., eds., The Structure of Surfaces Spring Series in Surface Science, Vol.2 (Spring, Berlin, 1985).Google Scholar
3. Chang, L. and Giessen, B., eds., Synthetic Modulated Structures (Academic Press, New York, 1985).Google Scholar
4. Dow, J. D., Schuller, I.K and Hillard, J. E., eds., Interfaces, Superlattices and Thin Films, Mat. Res. Soc. Proc., Vol.77 (1987).Google Scholar
5. Takagi, S., Acta. Cryst. 15, 1311 (1962).Google Scholar
6. Taupin, D., Bull. Soc. Fran. Miner. Cryst. 87, 469 (1964).Google Scholar
7. Fleming, R. M., Mcwhan, D. B., Gossard, A. C., Wiegmann, W. and Logan, R. A., J. Appl. Phys., 51, 357 (1980).CrossRefGoogle Scholar
8. Wall, M. A. and Jankowski, A. F., Thin Solid Films 181 313 (1989).Google Scholar
9. Klar, B. and Rustichelli, F., Nuovo Cimento 1 249 (1973).Google Scholar
10. Wie, C. R., Tombrello, T. A. and Vreeland, T. Jr., J. Appl. Phys. 59, 3743 (1986).Google Scholar
11. Ibers, J. A. and Hamilton, W. C., eds., International Tables for X-ray Crystallography Vol. IV (Kynoch, Birmingham, 1974).Google Scholar
12. Mitura, Z. and Mikolajczak, P., J. Phys. F: Met. Phys. 18, 183 (1988).Google Scholar
13. Mathews, J. W., Mader, S. and Light, T. B., J. Appl. Phys. 41 3800 (1970).Google Scholar
14. Mathews, J. W. and Blakeslee, A. E., J. Crystal Growth 27, 118 (1974).Google Scholar
15. Yang, W. M. C., Ph. D. Thesis,Northwestern University, Evanston, I1 (1971).Google Scholar
16. Purdes, A., Ph. D. Thesis, Northwestern University, Evanston, I1 (1976).Google Scholar
17. Testardi, L. R., Willens, R. H., Krause, J. T., Mcwhan, D. B. and Nakahara, S., J. Appl. Phys. 52., 510 (1981).CrossRefGoogle Scholar
18. Baral, D., Ph. D. Thesis, Northwestern University, Evanston, Il (1983).Google Scholar
19. Chen, S. P., Voter, A. F. and Srolovitz, D. J., Phys. Rev. Lett. 57, 1308 (1986).Google Scholar
20. Jankowski, A. F., J. Phys. Chem. Solids 50, 641 (1989).Google Scholar
21. Jankowski, A. F., J. Phys. F: Met. Phys. 18, 413 (1988).Google Scholar
22. Jankowski, A. F., Mat. Sci. Eng. A114, L17 (1989).Google Scholar