Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T04:35:48.888Z Has data issue: false hasContentIssue false

Arrayed ZnO Nanorods Fabrication on ZnO Film by Self-catalyst Growth Method in Aqueous Solution

Published online by Cambridge University Press:  02 January 2014

E. K.C. Pradeep
Affiliation:
Institute for Nanotechnology, Kochi University of Technology, Kami city, Kochi 782-8502, JAPAN
X. Li*
Affiliation:
Institute for Nanotechnology, Kochi University of Technology, Kami city, Kochi 782-8502, JAPAN
T. Kawaharamura
Affiliation:
Institute for Nanotechnology, Kochi University of Technology, Kami city, Kochi 782-8502, JAPAN
D. Wang
Affiliation:
Department of Environmental Science and Engineering, Kochi University of Technology, Kami city, Kochi 782-8502, JAPAN
A. Hatta
Affiliation:
Institute for Nanotechnology, Kochi University of Technology, Kami city, Kochi 782-8502, JAPAN
C. Li*
Affiliation:
Institute for Nanotechnology, Kochi University of Technology, Kami city, Kochi 782-8502, JAPAN
Get access

Abstract

ZnO nanorods were grown up from as-deposited ZnO film on which the zinc self-catalysts generated by a novel reducing method. Well aligned ZnO nanorods with a uniform high aspect ratio were grown up on multi-annealed samples. The length of nanorods depended significantly on the reaction time in the hydrothermal synthesis.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Özgür, Ü., Alivov, Y.. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S.-J., and Morkoc, H., J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
Look, D.C., Mat. Sci. Eng. B. 80, 383 (2001)CrossRefGoogle Scholar
Anta, J. A., Guillén, E., Zaera, R.T., Phys, J.. Chem. C. 116, 11413 (2012)Google Scholar
Wadeasa, A., Nur, O., Willander, M., Nanotechnology. 20, 065710 (2009)CrossRefGoogle Scholar
Wan, Q., Wang, T. H., Zhao, J. C., Appl. Phys. Lett. 87, 083105 (2005)CrossRefGoogle Scholar
Wang, Z.L., Song, J., Science 312, 242 (2006)CrossRefGoogle ScholarPubMed
Li, C., Kawaharamura, T., Matsuda, T., Furuta, H., Hiramatsu, T., Furuta, M., Hirao, T., Appl. Phys. Express 2, 091601 (2009)CrossRefGoogle Scholar
Park, W.I., Kim, D.H., Jung, S.W., Yi, D.C., Appl. Phys. Lett. 80, 4232 (2002)CrossRefGoogle Scholar
Pradhan, D., Leung, K.T., Langmuir 24, 9708 (2008)CrossRefGoogle Scholar
Abbasi, M.A., Khan, Y., Hussain, S., Nur, O., Willander, M., Vacuum 86, 1998 (2012)CrossRefGoogle Scholar
Wu, J.J., Liu, S.C., Adv. Mater. 14, 215 (2002)3.0.CO;2-J>CrossRefGoogle Scholar
Sun, Y., Gareth, M., Ashfold, M. N. R., Chem. Phys. Lett., 396, 21 (2004)CrossRefGoogle Scholar
Heo, Y.W. Heo, Y. W., Varadarajan, V., Kaufman, M., Kim, K., Norton, D. P., Ren, F., and Fleming, P. H., Appl. Phys. Lett. 81, 3046 (2002)CrossRefGoogle Scholar
Zhang, H., Yang, D., Ma, X., Du, N., Wu, J., Que, D., J. Phys. Chem. B 110, 827 (2006)CrossRefGoogle Scholar
Xu, S., Wang, Z.L., Nano Res. 4, 1113 (2011)Google Scholar
Ahsanulhaq, Q., Kim, J. H., Kim, J. H., Hahn, Y. Nanoscale. Res. Lett. 5, 669 (2010)CrossRefGoogle Scholar
Jo, S. H., Lao, J. Y., Ren, Z. F., Farrer, R. A., Baldacchini, T., Fourkas, J. T., Appl. Phys. Lett., 83, 4821 (2003)CrossRefGoogle Scholar
XU, X., Wu, M, Asoro, M., Ferreira, P. J. Fan, D. L., Cryst. Growth Des. 12, 4829(2012)CrossRefGoogle Scholar
Sekar, A., Kim, S.H., Umar, A., Hahn, Y.B., J. Cryst. Growth 277, 471 (2005 CrossRefGoogle Scholar
Wang, D., Li, Z., Kawaharamura, T., Furuta, M., Narusawa, T., Li, C., Phys. Status Solidi C, 9, 194 (2012)CrossRefGoogle Scholar
pan, Z.W, Dai, A.R, Wang, Z.L, Science 291, 1947 (2001)CrossRefGoogle Scholar
Li, X., Pradeep, C., Wang, D., Kawaharamura, T., Nitta, N., Furuta, H., Hatta, A., Li, C., in 28th European Photovoltaic Solar Energy Conference Exhibition, Frankreich, France, 2013, pp. 434436 Google Scholar
Zaera, R.T., Elias, J., Clément, C.L., Appl. Phys. Lett. 93, 233119 (2008)CrossRefGoogle Scholar
Chiba, Y., Islam, A., Wathanabe, Y., Komiya, R., Koide, N. and Han, L., Jpn. J. Appl. Phys., 45, 368 (2006)CrossRefGoogle Scholar
Laudise, R. A., Ballman, A. A., J. Phys. Chem. 64, 688 (1960)CrossRefGoogle Scholar
Park, J.H., Muralidaran, P., Kim, D.K., Materials Letters 63 1019 (2009)CrossRefGoogle Scholar
Kwak, C., Kim, B. H., Park, C.I., Park, S. H., Seol, S. Y., Kim, S.H., Han, S.W, J. Nanosci. Nanotechnol., 10, 912 (2010)CrossRefGoogle Scholar