Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T13:51:03.015Z Has data issue: false hasContentIssue false

Atomistic and Coarse-Grained Modeling Strategies for Thin Film Nucleation and Growth on Quasicrystalline Surfaces

Published online by Cambridge University Press:  25 January 2013

James W. Evans
Affiliation:
Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, U.S.A. Ames Laboratory – USDOE, Iowa State University, Ames, Iowa 50011, U.S.A.
Patricia A. Thiel
Affiliation:
Department of Chemistry, Iowa State University, Ames, Iowa 50011, U.S.A. Ames Laboratory – USDOE, Iowa State University, Ames, Iowa 50011, U.S.A.
Bariş Ünal
Affiliation:
Ames Laboratory – USDOE, Iowa State University, Ames, Iowa 50011, U.S.A. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge MA 02139, U.S.A.
Get access

Abstract

Strategies are described for modeling the kinetics of non-equilibrium film growth during deposition of metals on quasicrystalline substrates. We review previous atomistic-level lattice-gas modeling and Kinetic Monte Carlo simulation for pseudomorphic (or commensurate) submonolayer growth based on a “disordered or irregular bond-network” (DBN) of neighboring adsorption sites. We describe extensions to treat strain effects and multilayer growth, and discuss a type of commensurate-incommensurate transition expected around 2-3 layers. We also describe a coarse-grained “step dynamics” modeling which tracks the dynamics of island edges in each layer rather than individual atoms. Step dynamics models can also include key aspects of the physics such as layer-dependent energetics, including quantum size effects, and strain effects.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fournee, V. and Thiel, P.A., J. Phys. D: Appl. Phys. 38, R83 (2005).10.1088/0022-3727/38/6/R01CrossRefGoogle Scholar
Fournee, V., Ledieu, J., Shimoda, M., Krajci, M., Sharma, H., et al. ., Israel J. Chem. 51, 1 (2011).10.1002/ijch.201100141CrossRefGoogle Scholar
Evans, J.W., Thiel, P.A., and Bartelt, M.C., Surf. Sci. Rep. 61, 1 (2006).10.1016/j.surfrep.2005.08.004CrossRefGoogle Scholar
Ghosh, C., Liu, D.-J., Schnitzenbaumer, K.J., Jenks, C.J., et al. ., Surf. Sci. 600, 2220 (2006).10.1016/j.susc.2006.03.013CrossRefGoogle Scholar
Unal, B., Fournee, V., Thiel, P.A., and Evans, J.W., Phys. Rev. Lett. 102, 196103 (2009).10.1103/PhysRevLett.102.196103CrossRefGoogle Scholar
Cai, T., Ledieu, J., McGrath, R., Fournee, V., Lograsso, T.A., et al. ., Surf. Sci. 526, 115 (2003).10.1016/S0039-6028(02)02593-1CrossRefGoogle Scholar
Unal, B., Fournee, V., Schnitzenbaumer, K.J., et al. ., Phys. Rev. B 75, 064205 (2007).10.1103/PhysRevB.75.064205CrossRefGoogle Scholar
Barkema, G.T. and Mousseau, N., Phys. Rev. Lett. 77, 4358 (1996).10.1103/PhysRevLett.77.4358CrossRefGoogle Scholar
Lam, C.-H., Lee, C.-K., and Sander, L.M., Phys. Rev. Lett. 89, 216102 (2002).10.1103/PhysRevLett.89.216102CrossRefGoogle Scholar
Misbah, C., Pierre-Louis, O., and Saito, Y., Rev. Mod. Phys. 82, 981 (2010).10.1103/RevModPhys.82.981CrossRefGoogle Scholar