Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T07:18:36.392Z Has data issue: false hasContentIssue false

Atomistic Modeling of Ultrathin Fe Films on Cu (111)

Published online by Cambridge University Press:  10 February 2011

A. Rakotomahevitra
Affiliation:
Department of Physics, Florida Atlantic University, Boca Raton, Florida 33431
L. T. Wille
Affiliation:
Department of Physics, Florida Atlantic University, Boca Raton, Florida 33431
M. S. Rakotomalala
Affiliation:
Département de Physique, Université d'Antananarivo, Faculté des Sciences, BP 906, Antananarivo 101, Madagascar
Get access

Abstract

We have used the embedded-atom method (EAM) to perform molecular-dynamics (MD) simulations of iron films grown on Cu (111). The iron atoms were randomly deposited, one at a time, above the surface just within the force range of the nearest surface atom. The growth mode is discussed by following the iron film coverage for an incident-atom energy ranged from 0.5eV to 15eV. A transition from island to layer by layer growth is observed as a function of incident energy. The effect of deposition rate is also studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Vaterlaus, A., Stamm, C., Maier, U., Pini, M. G., Politi, P., and Pescia, D., Phys. Rev. Lett. 84, 2247 (2000).10.1103/PhysRevLett.84.2247Google Scholar
2 Abanov, A., Kalatsky, V., Pokrovsky, V. L., and Saslow, W. M., Phys. Rev. B 51, 1023 (1995).10.1103/PhysRevB.51.1023Google Scholar
3 Shen, J., Jenniches, H., Mohan, Ch.V., Barthel, J., Klaua, M., Ohresser, P., and Kirschner, J., Europhys. Lett. 43, 349 (1998).10.1209/epl/i1998-00364-5Google Scholar
4 Etlerbrock, R. D., Fuest, A., Schatz, A., Keune, W., and Brand, R. A., Phys. Rev. Lett. 74. 3053 (1995).10.1103/PhysRevLett.74.3053Google Scholar
5 Theobald, A., Schaff, O., Hirschmugl, C.J., Fernandez, V., Schindler, K.-M., Polcik, M., and Bradshaw, A. M., Phys. Rev. B 59, 2313 (1999).10.1103/PhysRevB.59.2313Google Scholar
6 Tian, D., Jona, F., Marcus, P. M., Phys. Rev. B 45, 11216 (1992).10.1103/PhysRevB.45.11216Google Scholar
7 Ohresser, P., Shen, J., Barthel, J., Zheng, M., Mohan, C. V., Klaua, M., and Kirschner, J., Phys. Rev. B 59, 3696 (1999).10.1103/PhysRevB.59.3696Google Scholar
8 Raekerd, T. J. and DePristo, A. E., Surf. Sci. 317, 283 (1994).10.1016/0039-6028(94)90284-4Google Scholar
9 Saúl, A. and Weissman, M., Phys. Rev. B 60, 4982 (1999).10.1103/PhysRevB.60.4982Google Scholar
10 Wille, L. T. and Dreyssé, H., J. Appl. Phys. 85, 4622 (1999).10.1063/1.370427Google Scholar
11 Levanov, N., Stepanyuk, V. S., Hergert, W., Trushin, O. S., and Kokko, K., Surf. Sci. 400, 54 (1998).10.1016/S0039-6028(97)00841-8Google Scholar
12 Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).10.1103/PhysRevB.33.7983Google Scholar
13 Yang, Z. and Johnson, R. A., Modelling Simul. Mater. Sci. Eng. 1, 707 (1993); R. A. Johnson, Phys. Rev. B 41, 9717 (1990).10.1088/0965-0393/1/5/010Google Scholar
14 Ohresser, P., Shen, J., Barthel, J., Zheng, M., Mohan, C. V., Klaua, M., and Kirschner, J., Phys. Rev. B 59, 3696 (1999).10.1103/PhysRevB.59.3696Google Scholar
15 Gilmore, C. M. and Sprague, J. A., Phys. Rev. B 44, 8950 (1991).10.1103/PhysRevB.44.8950Google Scholar
16 Luedtke, W. D. and Landman, U., Phys. Rev. B 44, 5970 (1991).10.1103/PhysRevB.44.5970Google Scholar