Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T06:44:49.441Z Has data issue: false hasContentIssue false

Auger Electron Spectroscopy of The CVD Diamond Surface Under Electron Exposure

Published online by Cambridge University Press:  10 February 2011

I. L. Krainsky
Affiliation:
NASA Lewis Research Center, Cleveland, OH 44135
G. T. Mearini
Affiliation:
NASA Lewis Research Center, Cleveland, OH 44135
V. M. Asnin
Affiliation:
NASA Lewis Research Center, Cleveland, OH 44135 National Research Council Associates
H. Sun
Affiliation:
Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701-3995
M. Foygel
Affiliation:
Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701-3995 National Research Council Associates
A. G. Petukhov
Affiliation:
Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701-3995
Get access

Abstract

A simultaneous study of Auger spectra and secondary electron emission from the chemical vapor deposited diamond films under extended electron beam exposure is presented. Up to a 1.2 eV increase in energy of the carbon Auger peak accompanied by the decrease of the total secondary electron yield has been found. Exposure to hydrogen has resulted in recovery of the both Auger peak position and secondary yield. First-principles electronic structure calculations have been carried out to interpret the Auger peak shift. The effect is shown to be due to a change in the surface upper-valence band local density of states of the diamond crystal which is dependent on the extent of hydrogen coverage of the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Diamond: electronic properties and applications, edited by Pan, L.S. and Kania, D.R. (Kluwer Academic Publisher, 1995).Google Scholar
2. Himpsel, F. J., Knapp, J. A., van Vechten, J. A., and Eastman, D. E., Phys. Rev. 20, 624 (1979).Google Scholar
3. Pate, B. B., Spicer, W. E., Ohta, T. and Lindau, I., J. Vac. Sci. Technol. 17, 1087 (1980).Google Scholar
4. van der Weide, J. and Nemanich, R. J., J. Vac. Sci. Technol., B, 12, 2475 (1994).Google Scholar
5. van der Weide, J., Zhang, Z., Baumann, P. K., Wensell, M. G., Bernholc, J., and Nemanich, R. J., Phys. Rev. B, 50, 5803 (1994).Google Scholar
6. Bandis, C. and Pate, B. B., Phys. Rev. Lett. 74, 777 (1995).Google Scholar
7. Krainsky, I. L., Asnin, V. M., Mearini, G. T., and Dayton, J. A., Jr. (to be published)Google Scholar
8. Mearini, G. T., Krainsky, I. L., and Dayton, J. A. Jr., Surf. and Int. Anal. 21, 138 (1994).Google Scholar
9. Mearini, G. T., Krainsky, I. L., Wang, Y. X., Dayton, J. A., Jr., Ramasham, R. and Rose, M. F., Thin Solid Films 253, 151 (1994).Google Scholar
10. Mearini, G. T., Krainsky, I. L., Dayton, J. A., Jr., Wang, Y., Zorman, C. A., Angus, J. C., and Hoffman, R. W., Appl. Phys. Lett. 65, 2702 (1994).Google Scholar
11. Mearani, G. T., Krainsky, I. L., Dayton, J. A., Jr., Wang, Y., Zorman, C., Angus, J. C., Hoffman, R. W. and Anderson, D. F., Appl. Phys. Lett. 66, 242 (1995).Google Scholar
12. Krainsky, I. L., Mearini, G. T., Asnin, V. M., Sun, H., Foygel, M., and Petukhov., A. G. (to be published)Google Scholar
13. Prins, J. F., Appl. Phys. Lett. 41, 950 (1982).Google Scholar
14. Geis, M. W., Efremow, N. N., Woodhouse, J. D., McAleese, D. M., Marchyvka, M., Socker, D. G., Hochedez, J. F., IEEE Elec. Dev.Lett 12, 456 (1991).Google Scholar
15. Pepper, S. V. Appl. Phys. Lett. 38, 344 (1981).Google Scholar
16. Andersen, O. K., Jepsen, O., and Sob, M., in Electronic Band Structure and its Applications, edited by Yussouff, M. (Springer, Heidelberg, 1987).Google Scholar
17. Jepsen, O. and Andersen, O. K., Solid Stat. Comm. 9, 1763 (1971).Google Scholar
18. Hohenberg, P. and Kohn, W., Phys. Rev. B, 136, 864 (1964); W. Kohn and L. J. Sham, Phys. Rev. A, 140, 1133 (1965).Google Scholar
19. Ziman, J. M., Models of Disorder (Cambridge University Press, 1979).Google Scholar
20. Pate, B. B., Stephan, P.M., Binnis, C., Jupiter, P. J., Lindau, I., and Spicer, W.E., J. Vac. Sci. Technol. 19, 349 (1981).Google Scholar