Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T10:58:06.347Z Has data issue: false hasContentIssue false

B2 Phases and their Defect Structures: Part I.I. Ab initio Vibrational and Electronic Free Energy in the Al-Ni-Pt-Ru System

Published online by Cambridge University Press:  26 February 2011

Raymundo Arroyave
Affiliation:
Dept. Mat. Sci. & Eng., Pennsylvania State University, University Park, PA 16802, USA
Sara Prins
Affiliation:
Dept. Mat. Sci. & Eng., Pennsylvania State University, University Park, PA 16802, USA CSIR-NML, P.O. Box 395, Pretoria, 0001, South Africa
Zi-Kui Liu
Affiliation:
Dept. Mat. Sci. & Eng., Pennsylvania State University, University Park, PA 16802, USA
Get access

Abstract

In this work, we calculate the finite temperature thermodynamic properties of the binary B2 phases in the Al-Ni-Pt-Ru system, particularly the B2 RuAl phase in the Pt-Al-Ru ternary, through the incorporation of the vibrational and electronic contributions to the total free energy. The harmonic approximation is used to consider the atomic vibrations, with the quasi-harmonic correction to account for volume expansion effects on the vibrational entropy as the temperature increases. The vibrational entropy calculations are incorporated through the supercell approach. The calculated phonon dispersion curves show that the B2 PtRu structure is mechanically unstable at low temperatures, while B2 PtAl is marginally stable. The thermal electronic contribution is added to the total free energy. Finally, the formation enthalpies and entropies of B2 RuAl are calculated as a function of temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, M. W., Ott, R. T., Hufnagel, T. C., Wrigth, P. K. and Hemker, K. J., Surf. Coat. Technol. 163–164 (2003) 25.Google Scholar
2. Tolypgo, V. K. and Clarke, D. R., Acta Mater. 48 (2000) 3283.Google Scholar
3. Tryon, B., Pollock, T. M., Gigliotti, M. F. X. and Hemker, K. J., Scripta Materialia 50 (2004) 845.Google Scholar
4. Saunders, N. and Miodownik, A. P., CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Pergamon, Oxford; New York, 1998).Google Scholar
5. Gonze, X., Phys. Rev. B 55 (1997) 10337.Google Scholar
6. Wei, S. and Chou, M. Y., Phys. Rev. Lett. 69 (1992) 2799.Google Scholar
7. van de Walle, A. and Ceder, G., Rev. Mod. Phys. 74 (2002) 11.Google Scholar
8. Kohn, W. and Sham, L. J., Phys. Rev. 140 (1965) A1133.Google Scholar
9. Kresse, G.. (2004), vol. 2004.Google Scholar
10. van de Walle, A., Asta, M. and Ceder, G., CALPHAD 26 (2002) 539.Google Scholar
11. Dutton, D. H., Brockhousse, B. N. and Miiller, A. P., Can. J. Phys. 50 (1972) 2915.Google Scholar
12. Dederichs, P. H., Schober, H. and Sellmyer, D. J., in Metals: Phonon States, Electron States and Fermi Surfaces Hellwege, K. H., Olsen, J. L., Eds. (Springer-Verlag, Berlin, 1981), vol. 13a, Pt. 7.Google Scholar
13. Smith, H. G. and Wakabayashi, N., Solid State Commun. 39 (1981) 371.Google Scholar
14. Antonov, V. N., Milman, V. Y., Nemoshkalenko, V. V. and Zhalko-Titarenko, A. V., Z. Phys. B. 79 (1990) 223.Google Scholar
15. Villars, P.. (2004), vol. 2004.Google Scholar
16. Huang, X., Bungaro, C., Godlevsky, V. and Rabe, K. M., Phys. Rev. B 65 (2001) 141081.Google Scholar
17. McAlister, A. J. and Kahan, D. J., Bull. Alloy Phase Diagrams 7 (1986) 47.Google Scholar
18. Swift, D. C., Ackland, G. J., Hauer, A. and Kyrala, G. A., Phys. Rev. B 64 (2001) 2141071.Google Scholar
19. Knacke, O., Kubaschewski, O. and Hesselmann, K., Thermochemical Properties of Inorganic Substances (Springer-Verlag, New York, ed. Second Edition, 1991), vol. I.Google Scholar
20. Wang, Y., Liu, Z.-K. and Chen, L.-Q., Acta Mater. 52 (2004) 2665.Google Scholar