Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T19:01:26.499Z Has data issue: false hasContentIssue false

Band Offset Control by Interfacial Oxygen Content at GaAs:HfO2 interfaces

Published online by Cambridge University Press:  01 February 2011

Weichao Wang
Affiliation:
wcwang3279@gmail.com, Materials Science and Engineering, RL10, NSERL, 800 West Campbell Road, Richardson, 75080, United States
Robert M. Wallace
Affiliation:
rmwallace@utdallas.edu, University of Texas at Dallas, Materials Science, 800 W. Campbell Rd., RL10, Richardson, Texas, 75080, United States, 972-883-2845
Kyeongjae Cho
Affiliation:
kjcho@utdallas.edu, University of Texas at Dallas, Materials Science, 800 W. Campbell Rd., RL10, Richardson, Texas, 75080, United States, 972-883-2845
Get access

Abstract

The impact of interfacial oxygen content on the band offsets of GaAs:HfO2 interfaces was investigated using the density functional theory (DFT) method. Reference potential method was used to determine the band offsets. Moreover, GW correction was utilized to find more accurate value of the valence band edge of HfO2 and hence obtain more accurate band offsets. With gradually decreasing the interfacial O content from 100% to 30% (by changing O chemical potential corresponding to varying the growth condition), the valence band offset increases from 1.06 to 3.34 eV. It is found that this increase of the valence band offsets is inversely proportional to the charge loss of interfacial Ga atoms. Specifically, less charge loss of interfacial Ga induces less charge transfer from GaAs to HfO2 side. Consequently, the less charge loss of interfacial Ga essentially leads to an increase of the valence band offsets.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cho, K., Computational Materials Science, 23, 4347 (2002).Google Scholar
2 Kawamoto, A., Jameson, J., Griffin, P., Cho, K., and Dutton, R., IEEE Electron Dev. Lett., 22, 1416 (2001).Google Scholar
3 Frank, M. M. Wilk, G. D. Staradub, D., Gustafsson, T., Garfunkel, E., Chabal, Y. J. Grazul, J., and Muller, D. A. Appl. Phys. Lett. 86, 152904 (2005).Google Scholar
4 Afanas ev, V. V., Stesmans, A., Passlack, M., and Medendorp, N., Appl. Phys. Lett. 85, 597(2004).Google Scholar
5 Afanasev, V.V., Stesmans, A., Droopad, R., Passlack, M., Edge, L. F. and Schlom, D. G. Appl. Phys. Lett. 89, 092103 (2006).Google Scholar
6 Robertson, J., Vac, J.. Sci. Technol. B 18, 1785(2000)Google Scholar
7 Mnch, W., Surf. Sci. 21, 443 (1994).Google Scholar
8 Kresse, G. and Furthmller, J., Comput. Mater. Sci. 6, 15 (1996).Google Scholar
9 Kresse, G. and Furthmller, J., Phys. Rev. B 54, 8245 (1996).Google Scholar
10 Blochl, P. E. Phys. Rev. B 50, 17953 (1994).Google Scholar
11 Zhu, J. and Liu, Z. G. Appl. Phys. A: Mater. Sci. Process. 78, 741 (2004).Google Scholar
12 Hinkle, C. L. Sonnet, A. M. Vogel, E.M. McDonnell, S., Hughes, G. J. Milojevic, M., Lee, B., Aguirre-Tostado, F. S., Choi, K., Kim, H. C. Kim, J., and Wallace, R. M. Appl. Phys. Lett. 92, 071901 (2008).Google Scholar
13 Hinkle, C. L. Milojevic, M., Brennan, B., Sonnet, A. M. Aguirre-Tostado, F. S., Hughes, G. J., Vogel, E. M. and Wallace, R.M. Appl. Phys. Lett. 94, 162101 (2009).Google Scholar
14 Van de Walle, C.G., Martin, R. M. Phys. Rev. B 35, 8154 (1987).Google Scholar
15 Al-Allak, H. M. and Clark, S. J. Phys. Rev. B 63, 033311 (2001).Google Scholar
16 Hybertsen, M. S. and Louie, S. G. Phys. Rev. B 34, 53905413 (1986).Google Scholar
17 Ha, J., McIntyre, P. C. Cho, K., J. Appl. Phys. 101, 033706 2007.Google Scholar
18 Seguini, G., perego, M., spiga, S., and Fanciulli, M. and Dimoulas, A., Appl. Phys. Lett. 91, 192902 (2007).Google Scholar
19 Dalapati, G.K., Oh, H., Lee, S. J. Sridhara, A., See, A., Wong, W., and Chi, D., Appl. Phys. Lett. 92, 042120 (2008).Google Scholar
20 Afanasev, V. V., Badylevich, M., Stesmans, A., Brammertz, G., Delabie, A., Sionke, S., OMahony, A., Povey, I. M. Pemble, M. E. OConnor, E., Hurley, P. K. and Newcomb, S. B., Appl. Phys. Lett. 93, 212104 (2008).Google Scholar
21 Wang, W., Xiong, K., Wallace, R.M., and Cho, K., Impact of Interfacial Oxygen Content on Bonding, Stability, Band offsets and Interface States of GaAs:HfO2 Interfaces, J. App. Phys. (submitted)Google Scholar
22 Peacock, P. W. Xiong, K., Tse, K., and Robertson, J., Phys. Rev. B 73, 075328 (2006).Google Scholar
23 Tanimura, et al. , Appl. Phys. Lett. vol. 96, 162902 (2010).Google Scholar
24 Seguini, G., perego, M., spiga, S., and Fanciulli, M. and Dimoulas, A., Appl. Phys. Lett. 91, 192902 (2007).Google Scholar
25 Henkelman, G., Arnaldsson, A., and Jnsson, H., Comput. Mater. Sci. 36, 354 (2006).Google Scholar