Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T00:58:45.327Z Has data issue: false hasContentIssue false

Beam-Assisted CVD of Microelectronic Films

Published online by Cambridge University Press:  21 February 2011

K. A. Emery
Affiliation:
Department of Electrical Engineering, Colorado State University Fort Collins, CO 80523
L. R. Thompson
Affiliation:
Department of Electrical Engineering, Colorado State University Fort Collins, CO 80523
D. Bishop
Affiliation:
Department of Electrical Engineering, Colorado State University Fort Collins, CO 80523
H. Zarnani
Affiliation:
Department of Electrical Engineering, Colorado State University Fort Collins, CO 80523
P. K. Boyer
Affiliation:
Department of Electrical Engineering, Colorado State University Fort Collins, CO 80523
C. A. Moore
Affiliation:
Department of Electrical Engineering, Colorado State University Fort Collins, CO 80523
J. J. Rocca
Affiliation:
Department of Electrical Engineering, Colorado State University Fort Collins, CO 80523
G. J. Collins
Affiliation:
Department of Electrical Engineering, Colorado State University Fort Collins, CO 80523
Get access

Abstract

The properties of SiO2 and Si3 N4 films deposited by an ArF excimer laser, glow discharge electron beam and conventional plasma-enhanced CVD are compared. The deposition apparatus, technique, and conditions in addition to the physical, chemical and electrical properties of the films are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Boyer, P. K., Roche, G. A., Ritchie, W. H., and Collins, G. J., Appl. Phys. Lett. 40, 716 (1982).Google Scholar
2. Solanki, R., Ritchie, W. H. and Collins, G. J., Appl. Phys. Lett. 43, 454 (1983).Google Scholar
3. Karlicek, R. F., Donnelly, V. M. and Collins, G. J., J. Appl. Phys. 53, 1084 (1982).Google Scholar
4. Boyer, P. K., Roche, G. A., Collins, G. J., and Ritchie, W. H., Proceedings Materials Research Society, Section 14.1, November 1–4, Boston, Massachusetts (1982).Google Scholar
5. Thompson, L. R., Rocca, J. J., Emery, K., Boyer, P. K., and Collins, G. J., Appl. Phys. Lett. 43, 777 (1983).Google Scholar
6. Thompson, L. R., Gobis, L., Bishop, D., Rocca, J. J., Emery, K. and Collins, G. J., J. Electrochem. Soc. 131, 462 (1984).Google Scholar
7. Griener, N. R., J. Chem. Phys. 47, 4373 (1967).Google Scholar
8. qi Yu, Zeng, Rocca, J. J., Meyer, J. D. and Collins, G. J., J. Appl. Phys. 53, 4704 (1982).Google Scholar
9. Massey, H. and Burhop, E., Electronic and Ionic Impact Phenomena, Oxford University Press, London, Vol. 1 (1969).Google Scholar
10. Dun, H., Pan, P., White, F. R., Douse, R. W., J. Electrochem. Soc. 128, 1555 (1981).Google Scholar
11. Boyer, P. K., Ritchie, W. H., and Collins, G. J., J. Electrochem. Soc. 129, 2155 (1982).CrossRefGoogle Scholar
12. Zavelovich, J., Rothschield, M., Gornik, W., and Rhodes, C. K., J. Chem. Phys. 74, 12, 1981.Google Scholar
13. Pliskin, W., J. Vac. Sci. Technol. 14, 1064 (1977).Google Scholar
14. Adams, A. C., J. Electrochem. Soc. 128, 1545 (1981).Google Scholar
15. Stein, H. J., Wells, V. A. and Hampy, R. E., J. Electrochem. Soc. 126, 1750 (1979).Google Scholar