Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:08:25.120Z Has data issue: false hasContentIssue false

Benefits and limits of the thermodynamic approach to C.V.D. Processes

Published online by Cambridge University Press:  21 February 2011

C. Bernard
Affiliation:
Laboratoire de Thermodynamique et Physico-Chimie Méalurgiques, ENSEEG, BP 75 - 38042 Saint-Martin-d'Hères Cedex, France.
R. Madar
Affiliation:
Laboratoire des Matériaux et du Génie Physique, ENSPG, BP 46, 38402 Saint-Martin-d'Hères, France.
Get access

Abstract

This paper intends to develop and illustrate by a few examples the principles of thermodynamic analysis which can be applied at an early stage to assist in selecting the following:

• the material to be deposited for a well-defined application,

• the nature of reactants

• the range of experimental parameters.

Specific emphasis will be given to the main problems relating to data selection: assessments, availability of coherent data, sensitivity of results to data accuracy, etc.

Finally, the validity of a thermodynamic approach at equilibrium will be discussed with a view to optimizing a dynamic non-equilibrium process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bernard, C., 6th Int. Conf. on High Temp. - Chem. of Inorg. Mat., Gaithersburg, April 1989, To appear in High Temp. Science.Google Scholar
[2]Bernard, C., Deniel, Y., Jacquot, A., Vay, P. and Ducarroir, M., J. Less Common Metals, 40, 165171, (1975).Google Scholar
[3]Ducarroir, M., Jaymes, M., Bernard, C. and Deniel, Y., J. Less Common Metals, 40, 173183, (1975).Google Scholar
[4]Bernard, C., Proc. 8th Int. Conf. on C.V.D. Ed. J.M. Blocher, G.E. Vuillard and G. Wahl, The Electrochemical Society, Pennington 3–16, (1981).Google Scholar
[5]Faktor, M.M. and Garrett, I., Growth of Crystals from the vapour, Chapman and Hall, London, (1974).Google Scholar
[6]Reisman, A. and Sedgwick, T.O.“Chemical Vapor Deposition and Solid Vapor Equilibria” in phase diagams, ed. Alper, A.M.Academic Press, N.Y. 4, 1, (1976).Google Scholar
[7]Noläng, B.I. and Richardson, M.W., J. Crystal Growth, 34, 198, (1976).Google Scholar
[8]Spear, K.E., Procd 7th Int. Conf. On C.V.D., Ed. T.O. Sedgwick and H. Lydtin, The Electrochen. Soc. 1–16, (1979).Google Scholar
[9]Schäfer, H.“Chemical transport reactions”, Academic Press, NY. (1964).Google Scholar
[10]Bloem, J. and Giling, L.J. in “Current topics in materials science” vol.1, E. Kaldis ed. 147–343, (1978).Google Scholar
[11]Steinmaier, W., Philips Res. Rept 18, 75, (1983).Google Scholar
[12]Van der Putte, P., Giling, J.L. and Bloem, J., J. of Crystal Growth, 31, 299307, (1975).Google Scholar
[13] JANAF Thermochemical Tables 3rd ed, J. Phys. Chem. Ref. Data, 14, Suppl.1, (1986).Google Scholar
[14]Woodruff, D.W., Sanchez-Martinez, R.A., J. Electrochem. Soc., 132, 706708, (1985).Google Scholar
[15]Hunt, L.P., J. Electrochem. Soc., 135, 206209, (1988).Google Scholar
[16]Thomas, N., Diplôme d'études approfondies, INPG, Grenoble (1989).Google Scholar
[17]Goto, T. and Hirai, T., in Proc. Tenth Int. Conf. on CVD, Ed. Cullen, G.W., The Electrochem. Soc., Pennington, 10701079, (1987).Google Scholar
[18]Barin, I., Knacke, O. and Kubaschewski, O., Thermochemical properties of inorganic substances, Ed. Springer-Verlag, Supplement, (1977).Google Scholar
[19]Kaufman, L., Calphad, 3, 4576, (1979).Google Scholar
[20]Wahl, G., Schmaderer, F., Metzger, M. and Nicoll, A.R., in Proc. 8th Int. Conf on C.V.D., Ed. Blocher, J.M., Vuillard, G.E. and Wahl, G., The Electrochem. Soc., Pennington, 685698, (1981).Google Scholar
[21]Vahlas, C., Chevalier, P.Y. and Blanquet, E., Calphad,. 13, 273292, (1989).Google Scholar
[22] L.V. Gurvich “Reference books and data base of the thermodynamic properties of inorganic substances” plenary lecture to be published in the IUPAC journal: Pure and Applied Chemistry.Google Scholar
[23] FACT, Facility for the Analysis of Chemical Thermodynamics, Ecole Polytechnique, Montreal, Québec, Canada.Google Scholar
[24] IVTANTHERMO, Institute of High Temperature of the USSR Academy of Sciences, Moscow, USSR.Google Scholar
[25] Thermodata, Domaine Universitaire de Grenoble, BP.66, 38402 Saint Martin d'Hères cedex, France.Google Scholar
[26] Thermo. Calc data bank, Royal Institute of Technology, S-10044, Stockolm, Sweden.Google Scholar
[27]Teyssandier, F., Bernard, C. and Ducarroir, M., J. Mater. Sci., 23, 135140, (1988).Google Scholar
[28]Madar, R. and Bernard, C., Proc. of the A.V.S. Conf, Boston October (1989), to appear in J. of Vacuum Science and Technology.Google Scholar
[29]Madar, R., Mastromatteo, E., Vahlas, C., Bernard, C., Palleau, J. and Torrés, J., Proc. of the MRS Fall Meeting, Boston-USA, 71, (1988).Google Scholar
[30]Ignat, M., Metais, P., Dubois, J.D., Bernard, C. and Ducarroir, M., Materials Research Soc. Spring Meeting. Reno, Nevada, (1988).Google Scholar
[31]Christin, F., Naslain, R. and Bernard, C., Procd 7th Int. Conf.on C.V.D., Ed. Sedgwick, T.O. and Lydtin, H., the Electrochem. Soc., 499–514, (1979).Google Scholar
[32]Hannache, H., Thèse Docteur d'Etat Es Sciences, Facultè de Bordeaux, (1984).Google Scholar
[33]Spencer, P.J. and Holleck, H. 7th Calphad Meeting, Berkeley, California, (1988).Google Scholar
[34]Saunders, N. and Miodownik, A.P., Calphad, 9, 283290, (1985).Google Scholar
[35]Knotek, O. and Leyendecker, T., J. Solid State Chem. 70, 318, (1987).Google Scholar