Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T06:35:25.206Z Has data issue: false hasContentIssue false

Bridging Properties of Multiblock Copolymers

Published online by Cambridge University Press:  11 February 2011

K.Ø. Rasmussen
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, U.S.A.
E. M. Kober
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, U.S.A.
T. Lookman
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, U.S.A.
A. Saxena
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, U.S.A.
Get access

Abstract

Using self-consistent field theory, we attempt to elucidate the links between microscopically determined properties, such as the bridging fraction of chains, and mechanical properties of multiblock copolymer materials. We determine morphological aspects such as period and interfacial width and calculate the bridging fractions, and compare with experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRENCES

[1] Hamley, I.W., The Physics of Block Copolymers (Oxford University Press, New York, 1998).CrossRefGoogle Scholar
[2] Khandpur, A.K., Förster, S., Bates, FS., Hamley, I.W., Ryan, AJ., Bras, W., Almdal, K., and Mortensen, K., Macromolecules 28, 8796 (1995).CrossRefGoogle Scholar
[3] Thomas, E.L. and Lescanec, R.L., Philos. Trans. R. Soc. London Ser. A 348, 149 (1994).Google Scholar
[4] Matsen, M.W. and Bates, F.S., J. Chem. Phys. 106, 2436 (1997).CrossRefGoogle Scholar
[5] Holden, G., Legge, N.R., Quirk, R., and Schroeder, H.E., Thermoplastic Elastomers (Hanser Publishers, New York, 1996).Google Scholar
[6] Benoit, H. and Hadziioannou, G., Macromolecules 21, 1449 (1988).CrossRefGoogle Scholar
[7] Kavassalis, T.A. and Whitmore, M.D., Macromolecules 24, 5340 (1991).CrossRefGoogle Scholar
[8] Rasmussen, K.Ø., Sewell, T.D., Lookman, T., and Saxena, A. in Filled and Nanocoposite Polymer Materials, edited by Nakatani, A.I., Hjelm, R.P., Gerspacher, M., and Krishnamoorti, R., (Mater. Res. Soc. Proc. 661, Warrendale, PA, 2001) pp. KK4.6.1-KK4.6.6.Google Scholar
[9] Matsen, M.W. and Schick, M., Macromolecules 27, 7157 (1994).CrossRefGoogle Scholar
[10] Helfand, E. J. Chem. Phys. 62, 999 (1975);CrossRefGoogle Scholar
Helfand, E. Macromolecules 8, 552 (1975).CrossRefGoogle Scholar
[11] Spontak, RJ., and Smith, S.D., J. Poly. Sci. B: Polym. Phys. 39, 947 (2001).CrossRefGoogle Scholar
[12] Rasmussen, K.Ø., Kober, E.M., Lookman, T., and Saxena, A. J. Poly. Sci. B: Poly. Phys. 41, xxxx (2003).CrossRefGoogle Scholar
[13] Hajduk, D. A., Harper, P.E., Gruner, S.M., Honeker, C.C., Kim, G., Thomas, E.L., and Fetters, L.J., Macromolecules 27, 4063 (1994).CrossRefGoogle Scholar
[14] Matsen, M.W. and Schick, M., Macromolecules 27, 187 (1994).CrossRefGoogle Scholar
[15] Matsen, M.W. and Thompson, R.B., J. Chem. Phys. 111, 7139 (1999).CrossRefGoogle Scholar
[16] The molecular weight of the diblock used in Ref. [13] is different form that used by Spontak and Smith [11] . Therefore the relevant Rg has been obtained by scaling the value given in Ref. [13] with the molecular mass ratio.Google Scholar