Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T09:03:21.322Z Has data issue: false hasContentIssue false

Calculations of Spin-Wave Energy Gap in Transition Metals

Published online by Cambridge University Press:  25 February 2011

V.P. Antropov
Affiliation:
Max-Planck-Institut für Festkörperforschung Heisenbergstr. 1, D-7000 Stuttgart 80, FRG
A.I. Liechtenstein
Affiliation:
Max-Planck-Institut für Festkörperforschung Heisenbergstr. 1, D-7000 Stuttgart 80, FRG
Get access

Abstract

Analytical expressions for the total energy derivative with respect to the magnetic moment rotations have been derived in the relativistic local-spin density functional approach and multiple scattering theory. The spin-wave stiffness constant as well as the gap in the spin-wave spectrum due to relativistic anisotropy effects is calculated in KKR-ASA approximation for bcc Fe. This is compared with other theoretical calculations and available experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eriksson, O. et al. , Phys. Rev. B 42, 2707 (1990).Google Scholar
2. Mryasov, O. N., Liechtenstein, A. I., Sandratskii, L. M., and Gubanov, V. A., J. Phys: Condens. Matter 31, 7683 (1991).Google Scholar
3. Shirane, G., Minkiewicz, V.J., and Nathans, R., J. Appl. Phys. 39, 383 (1968).Google Scholar
4. Liechtenstein, A. I., Katsnelson, M. I., Antropov, V. P., and Gubanov, V. A., J. Magn. Magn. Mater. 67, 65 (1987).CrossRefGoogle Scholar
5. Gunnarsson, O. and Lunqvist, B. I., Phys. Rev. B. 13, 4274 (1976).Google Scholar
6. Machintosh, A. R. and Andersen, O. K., in: Electrons at the Fermi Surface, ed. Springford, M. (Cambridge Univ. Press, London, 1980) p. 149.Google Scholar
7. Strange, P., Staunton, J., and Gyorffy, B. L., J. Phys. F 17, 3355 (1984).Google Scholar
8. Lloyd, P. and Smith, P. V., Advan. Phys. 21, 69 (1972)CrossRefGoogle Scholar
9. Daalderop, G. H. O., Kelly, P. L., and Schuurmans, M. H., Phys. Rev. B. 42, 7270 (1990).CrossRefGoogle Scholar