Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T10:41:51.675Z Has data issue: false hasContentIssue false

Cavities in He-Implanted Si: “Internal” Surface Science

Published online by Cambridge University Press:  25 February 2011

D. M. Follstaedt
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, New Mexico 87185–5800
S. M. Myers
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, New Mexico 87185–5800
H. J. Stein
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, New Mexico 87185–5800
Get access

Abstract

The concept of using internal cavities in semiconductors for surface studies is presented. The microstructures of He-implanted (001) Si are characterized with [110] cross-section TEM, which shows that internal areas 5–7 times that of the specimen front surface are achieved with 1×1017 He/cm2 implanted at 30 keV and annealed at 700 or 800°C. Examples using internal cavities to determine surface bond strengths of other elements adsorbed on Si are indicated. Facets on the cavities are used to examine the equilibrium crystal shape of Si and to measure the ratios of the surface free energies of the observed planes. The {111} planes have the lowest energy, and those of {001} and {110} are 1.09(7) and 1.07(3) times higher, respectively. We also find cavities in He-implanted Ge after annealing that can be used for similar studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Myers, S. M., Follstaedt, D. M., Stein, H. J. and Wampler, W. R., Phys. Rev. B45, 3914 (1992); a more detailed article is expected in 1993.CrossRefGoogle Scholar
2. Follstaedt, D. M., submitted to Applied Physics Letters.Google Scholar
3. Myers, S. M., Bishop, D. M., Follstaedt, D. M., Stein, H. J. and Wampler, W. R., Proceedings of the Materials Research Society Fall 1992 Meeting, Symposium F, Volume 283 (1993).Google Scholar
4. Van Veen, A., Griffioen, C. C. and Evans, J. H., Mat. Res. Soc. Symp. Proc. 107, 449 (1988);Google Scholar
Griffioen, C. C., Evans, J. H., DeJong, P. C. and Van Veen, A., Nucl. Inst. Meth. B27, 417 (1987).Google Scholar
5. Van Wieringen, A. and Warmoltz, N., Physica 22, 849 (1956).CrossRefGoogle Scholar
6. Wolf, H. F., Semiconductors, (Wiley Interscience, New York, 1971), p. 153.Google Scholar
7. Follstaedt, D. M., Myers, S. M., Wampler, W. R. and Stein, H. J., Proc. 50th Ann. Mtg. Electron Microscopy Society of America (San Francisco Press, 1992), p. 334.Google Scholar
8. Stein, H. J., Myers, S. M. and Follstaedt, D. M., Journal of Applied Physics, in press.Google Scholar
9. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids, (Pergamon Press, New York, 1985);Google Scholar
Ziegler, J. F., private communication, 1990.Google Scholar
10. Wampler, W. R., Myers, S. M. and Follstaedt, D. M., submitted to Physical Review B.Google Scholar
11. Redman, D. and Follstaedt, D. M., Guilinger, T. and Kelly, M., Mat. Res. Soc. Symp. Proc. 279 (elsewhere herein) (1993).Google Scholar
12. Wulff, G., Kristallogr, Z.. Mineral. 34, 449 (1901).Google Scholar
13. Nelson, R. S., Mazey, D. J. and Barnes, R. S., Phil. Mag. 11, 91 (1965).CrossRefGoogle Scholar
14. Wolffand, G. A., Gualtieri, J. G., The Amer. Miner. 47, 562 (1962).Google Scholar