No CrossRef data available.
Article contents
CdZnSe/Zn(Be)Se Quantum Dot Structures: Size, Chemical Composition and Phonons
Published online by Cambridge University Press: 01 February 2011
Abstract
The size and chemical composition of optically active CdZnSe/ZnSe and CdZnSe/Zn0.97Be0.03Se quantum dots (QDs) are determined using photoluminescence, photoluminescence excitation and polarized Raman scattering spectroscopies. We show that the addition of Be into the barrier enhances the Cd composition and the quantum size effect of optically active QDs. Additionally, surface phonons from QDs are observed in CdZnSe/ZnBeSe nanostructures.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004
References
REFERENCES
[1]
Strassburg, M., Deniozou, Th., Hoffmann, A., Heitz, R., Pohl, U. W., Bimberg, D., Litvinov, D., Rosenauer, A., Gerthsen, D., Schwedhelm, S., Lischka, K., and Schikora, D., Appl. Phys. Lett.
76, 685 (2000).Google Scholar
[3]
Rho, H., Jackson, H. E., Lee, S., Dobrowolska, M., and Furdyna, J. K., Phys. Rev. B
61, 15641 (2000).Google Scholar
[4]
Munoz, M., Guo, S. P., Zhou, X., Tamargo, M. C., Huang, Y. S., Trallero-Giner, C., and Rodriguez, A. H., Appl. Phys. Lett.
83, 4399 (2003)Google Scholar
[5]
Klein, M. C., Hache, F., Ricard, D., and Flytzanis, C., Phys. Rev. B
42, 11123 (1990).Google Scholar
[7]
Lowisch, M., Rabe, M., Kreller, F., and Henneberger, F., Appl. Phys. Lett.
74, 2489 (1999).Google Scholar
[9] Previous time-resolved PL studies [Zhou, X., Tamargo, M. C., Guo, S. P., and Chen, Y. C., J. Electron. Mater.
32, 733 (2003)] show that the for sample A, the PL decay time increases with temperature, indicating a quasi-two-dimensional character; for sample B, the PL decay time stays constant with increasing temperature until T=150K, suggesting zero-dimensional quantum confinement. Therefore, we consider the former to be spherical QDs and the latter to be quantum disks.Google Scholar
[10]
Gu, Y., Kuskovsky, Igor L., Fung, J., Robinson, R., Herman, I. P., Neumark, G. F., Zhou, X., Guo, S. P. and Tamargo, M. C., Appl. Phys. Lett.
83, 3779 (2003).Google Scholar
[11]
Gu, Y., Kuskovsky, Igor L., Robinson, R., Herman, I. P., Neumark, G. F., Zhou, X., Guo, S. P. and Tamargo, M. C., to be submitted.Google Scholar
[12]
Peranio, N., Rosenauer, A., Gerthsen, D., Sorokin, S. V., Sedova, I. V., and Ivanov, S. V., Phys. Rev. B
61, 16105 (2000).Google Scholar
[13]
Litvinov, D., Gerthsen, D., Rosenauer, A., Preis, H., Kurtz, E., and Klingshirn, C., Phys. Stat. Sol (b)
224, 147 (2001).Google Scholar
[14] Within the same model (sphere or disk), the change in the barrier bandgap (∼66meV) results only in ∼2meV difference in the PL energy.Google Scholar