Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:43:34.254Z Has data issue: false hasContentIssue false

Challenges in Interface Trap Characterization of Deep Sub-Micron MOS Devices Using Charge Pumping Techniques

Published online by Cambridge University Press:  10 February 2011

J.L. Autran
Affiliation:
Laboratoire de Physique de la Matière (LPM), UMR CNRS 5511, Institut National des Science Appliquées de Lyon, 20, avenue A. Einstein, F-69621 Villeurbanne Cedex, France, autran@insa-lyon.fr Centre de Projets en Microèlectronique Avancée (CPMA), CEA/Leti, 38054 Grenoble Cedex, France
P. Masson
Affiliation:
Laboratoire de Physique de la Matière (LPM), UMR CNRS 5511, Institut National des Science Appliquées de Lyon, 20, avenue A. Einstein, F-69621 Villeurbanne Cedex, France, autran@insa-lyon.fr Laboratoire de Physique des Composants à Semi-conducteurs (LPCS), UMR CNRS 5531, ENSERG, 23 rue des Martyrs, 38016 Grenoble Cedex 1, France Centre de Projets en Microèlectronique Avancée (CPMA), CEA/Leti, 38054 Grenoble Cedex, France
G. Ghibaudo
Affiliation:
Laboratoire de Physique des Composants à Semi-conducteurs (LPCS), UMR CNRS 5531, ENSERG, 23 rue des Martyrs, 38016 Grenoble Cedex 1, France Centre de Projets en Microèlectronique Avancée (CPMA), CEA/Leti, 38054 Grenoble Cedex, France
Get access

Abstract

This work surveys some of our recent experimental and theoretical advances in charge pumping for the electrical characterization of interface traps present in MOSFET architectures. The first part of this paper is devoted to an improved time-domain analysis of the charge pumping phenomenon. This approach presents the main advantage to use the same formalism to describe the charge pumping contribution of a single trap or a continuum of traps at the Si-SiO2 interface. The implications for deepsubmicron MOSFET characterization are illustrated. Some experimental aspects are then presented, including the adaptation of the technique to ultra-thin oxides, non-planar oxides and DRAM memory cells. Finally, recent charge pumping characterization results are reported concerning the electrical behavior of the Si-SiO2 interface submitted to particular technological treatments, electrical and radiation stresses, or post-degradation anneals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a recent review, see Electrical and Physical Characterization of Materials and Devices for Silicon Microelectronics, edited by Ghibaudo, G. and Boussey, J., Special Issue, Microelec. Eng. 40 (1998).Google Scholar
2.Autran, J.L., Balland, B. and Barbottin, G. in Instabilities in Silicon Devices - Silicon Passivation and Related Instabilities, edited by Barbottin, G. et Vapaille, A. (Elsevier Science Publishers North- Holland, Amsterdam, 1999), Volume 3, chapter 6, p. 405.Google Scholar
3.Saks, N.S., Groeseneken, G. and DeWolf, I., Appl. Phys. Lett. 68, 1383 (1996).Google Scholar
4.Ghibaudo, G. and Saks, N.S., J. Appl. Phys. 64, 4741 (1988).Google Scholar
5.Ghibaudo, G. and Saks, N.S., J. Appl. Phys. 65, 4311 (1989).Google Scholar
6. We neglect here the possible contribution of the so-called slow traps or border traps.Google Scholar
7.Shockley, W. and Read, W.T., Phys. Rev. 87, 62 (1952).Google Scholar
8.Hall, R.N., Phys. Rev. 87, 387 (1952).Google Scholar
9.Autran, J.L. and Chabrerie, C., Solid-State Electron. 39, 1394 (1996).Google Scholar
10.Groeseneken, G., Maes, H.E., Beltran, N. and Keersmaecker, R.F. De, IEEE Trans. Electron Devices 31, 42 (1984).Google Scholar
11.Groeseneken, G., DeWolf, I., Bellens, R. and Maes, H.E., IEEE Trans. Electron Devices 43, 940 (1996).Google Scholar
12.Saks, N.S., Appl. Phys. Lett. 70, 3380 (1997).Google Scholar
13.Masson, P., PhD Thesis (991SAL0007), Institut National des Sciences Appliquées de Lyon (1999)Google Scholar
14.Masson, P., Autran, J.L. and Brini, J., IEEE Electron Device Lett. 20, 92 (1999).Google Scholar
15.Flament, O., Autran, J.L., Paillet, P., Roche, P., Faynot, O. and Truche, R., IEEE Trans. Nucl. Sci. 44, 1930 (1997).Google Scholar
16.Goodwin, S.H. and Plummer, J.D., IEEE Trans. Electron Devices 31, 861 (1984).Google Scholar
17.Tanaka, J., Toyabe, T., Matsuo, H., Ihara, S., Masuda, H. and Otsuka, F., Solid-State Electron. 38, 567 (1995).Google Scholar
18.Brisset, C., Ferlet-cavrois, V., Flament, O., Musseau, O., Leray, J.L., Pelloie, J.L., Escoffier, R., Michez, A., Cirba, C. and Bordure, G., IEEE Trans. Nucl. Sci. 43, 2651 (1996).Google Scholar
19.Pierunek, S., PhD Thesis (971SAL0112), Institut National des Sciences Appliquées de Lyon (1997)Google Scholar
20. MEDICI™, Two-dimensional device simulation program, version 2.2, Technology Modeling Associates, Inc. (CA), June 1996.Google Scholar
21.Pierunek, S., Autran, J.L., Balland, B., Leroy, B. and Gaborieau, L.M., Microelectron. Eng., 36, 83 (1997).Google Scholar
22.Pierunek, S., Pogany, D., Autran, J.L. and Leroy, B., J. Non-Cryst. Sol. 245, 66 (1999).Google Scholar
23.Saks, N.S. and Ancona, M.G., IEEE Electron Device Lett. 11, 339 (1990).Google Scholar
24.Ancona, M.G. and Saks, N.S., J. Appl. Phys. 64, 4751 (1992).Google Scholar
25.Autran, J.L., PhD Thesis (941SAL0089), Institut National des Sciences Appliquées de Lyon (1994)Google Scholar
26.Autran, J.L. and Balland, B., Rev. Sci. Instrum. 65, 2141 (1994).Google Scholar
27.Gerardi, G.J., Poindexter, E.H., Caplan, P.J. and Johnson, N.M., Appl. Phys. Lett. 49, 348 (1986).Google Scholar
28.Autran, J.L., Mémoire d'Habilitation à Diriger des Recherches (99HDR004), Institut National des Sciences Appliquées de Lyon and Université Claude Bernard Lyon-I (1999)Google Scholar
29. See in particular Stahlbush, R.E., in The physics and chemistry of SiO2 and the Si-SiO2 interface - 3, edited by Massoud, H.Z., poindexter, E.H. and Helms, C.R., (The Electrochemical Society, Pennington, 1996), p. 525.Google Scholar
30.Autran, J.L., Chabrerie, C., Flament, O., Paillet, P., Leray, J.L. and Boudenot, J.C., IEEE Trans. Nucl. Sci., 43, 2547 (1996).Google Scholar
31. See Ref. 30, 32 and references therein.Google Scholar
32.Autran, J.L., Flament, O., Chabrerie, C., Musseau, O. and Leray, J.L., Proc. ESSDERC'96, edited by Baccarani, G. and Rudan, M., (Editions Frontières, Grenoble, 1996), p. 851.Google Scholar
33.Devine, R.A.B., Autran, J.L., Warren, W.L., Vanheusden, K.L. and Rostaing, J.C., Applied Physics Letters, 1997, Vol. 70, n°22, p. 29993001.Google Scholar
34.Autran, J.L., Devine, R.A.B., Warren, W.L. and Vanheusden, K., Proc. ESSDERC'97, edited by Grünbacher, H. (Editions Frontières, 1997), p. 580.Google Scholar
35.Masson, P., Morfouli, P., Autran, J.L. and Wortman, J.J., Microelectron. Eng., (1999)Google Scholar
36.Hill, W.L., Vogel, E.M., Misra, V., McLarty, P.K. and Wortman, J.J., IEEE Trans. Electron Devices 43, 15 (1996).Google Scholar
37.Severi, M., Dori, L., Impronta, M. and Guerri, S., IEEE Trans. Electron Devices 36, 2447 (1989).Google Scholar
38.Masson, P., Ghibaudo, G. and Autran, J.L., IEEE Trans. Electron Devices, submitted (1999)Google Scholar
39.Simmons, J.G. and Wei, L.S., Solid-State Electron. 16, 43 (1973).Google Scholar
40.Simmons, J.G. and Wei, L.S., Solid-State Electron., 16, 53 (1973).Google Scholar