Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T14:00:00.182Z Has data issue: false hasContentIssue false

Characterization of Electrochemically Activated Surface on Rolled Commercial AA8006 Alumnium

Published online by Cambridge University Press:  01 February 2011

Yingda Yu
Affiliation:
Department of Materials Technology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
Øystein Sævik
Affiliation:
Department of Materials Technology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
Jan Halvor Nordlien
Affiliation:
Hydro Aluminium R&D Materials Technology, N-4256 Håvik, Norway
Kemal Nisancioglu
Affiliation:
Department of Materials Technology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
Get access

Abstract

Commercial alloy AA8006 (nominal composition in wt%1.5Fe, 0.4Mn, 0.2Si) exhibits electrochemical activation in chloride media as a result of annealing at temperatures above 350°C. Activation is manifested by a significant negative shift in the corrosion potential and a significant increase in the anodic current when polarized above the corrosion potential in aqueous chloride solution. This phenomenon was correlated with the enrichment of trace element Pb at the oxide-metal interface. For fixed annealing time, maximum activation and Pb-enrichment are obtained at an annealing temperature of 450 °C independent of the original surface condition. Reduced activation with increasing temperature is attributed to increasing density of the spinel crystalline phase to cause the passivity of the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Leth-Olsen, H., Nordlien, J. H., and Nisancioglu, K., J. Electrochem. Soc., 144, L196 (1997).Google Scholar
2. Leth-Olsen, H. and Nisancioglu, K., Corros. Sci., 40, 1179 (1998).Google Scholar
3. Leth-Olsen, H., Afseth, A. and Nisancioglu, K., Corros. Sci., 40, 1195 (1998).Google Scholar
4. Leth-Olsen, H., Nordlien, J. H., and Nisancioglu, K., Corros. Sci., 40, 2051 (1998).Google Scholar
5. Keuong, Y. W., Nordlien, J. H. and Nisancioglu, K., J. Electrochem. Soc., 148, B497 (2001).Google Scholar
6. Afseth, A., Nordlien, J. H., Scamans, G. M., and Nisancioglu, K., Corros. Sci., 43, 2259 (2002).Google Scholar
7. Afseth, A., Nordlien, J. H., Scamans, G. M., and Nisancioglu, K., Corros. Sci., 44, 145 (2002).Google Scholar
8. Keuong, Y. W., Ono, S., Nordlien, J. H. and Nisancioglu, K., J. Electrochem. Soc., 150, B547 (2003).Google Scholar
9. Gundersen, J. T. B., Aytac, A., Nordlien, J. H. and Nisancioglu, K., Corros. Sci., 46, 265 (2004).Google Scholar
10. Nisancioglu, K. and Holtan, H., Corros. Sci., 18, 835 (1978).Google Scholar
11. Gundersen, J. T. B., Aytac, A., Nordlien, J. H. and Nisancioglu, K., Corros. Sci., 46, 679 (2004).Google Scholar
12. Sævik, Ø., Yu, Y., Nordlien, J. H. and Nisancioglu, K., submitted to J. Electrochem. Soc. (2004).Google Scholar
13. Tsubakino, H., Nogami, A., Yamamoto, A., Terasawa, M, Mitamura, T, Yamanoi, T., Kinomura, A. and Horino, Y., Materials Sci. Form, 396–402, 435 (2002).Google Scholar
14. Furneaux, R., Thompson, G.E. and Wood, G.C., Corros. Sci., 18, 853 (1978).Google Scholar
15. Field, D.J., Scamans, G. M. and Butler, E.P., Metall. Tran. 18A, 463 (1987).Google Scholar
16. Lea, C. and Seah, M.P., Philos. Mag., 35, 213 (1977).Google Scholar