Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T06:50:30.471Z Has data issue: false hasContentIssue false

Characterization of Preclean Induced Surface Damage by Rapid Thermal Processing

Published online by Cambridge University Press:  28 February 2011

T. Y. Hsieh
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
K. H. Jung
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
D. L. Kwong
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
T. H. Koschmieder
Affiliation:
Department of Physics, The University of Texas at Austin, Austin, TX 78712
J. C. Thompson
Affiliation:
Department of Physics, The University of Texas at Austin, Austin, TX 78712
Get access

Abstract

In-situ precleaning of the substrate surface plays a critical role in Si epitaxial growth. We have demonstrated that the preclean process can cause considerable surface damage, which strongly depends on process parameters such as system base pressure and temperature. Nomarski optical microscopy, SEM, and optical reflectance were used to characterize the surface morphology. Optical reflectance was more sensitive to surface damage but was also strongly dependent on substrate dopant redistribution after high temperature processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Donahue, T. J. and Reif, R., J. Appl. Phys., 57, 2757 (1985).CrossRefGoogle Scholar
2 Anthony, B., Hsu, T., Breaux, L., Qian, R., Banerjee, S., and Tasch, A., J. Electron. Mat., 19, 1027 (1990).CrossRefGoogle Scholar
3 Iyer, S. S., Arienzo, M., and de Fresart, E., Appl. Phys. Lett., 57, 893 (1990).CrossRefGoogle Scholar
4 Friedrich, J. A., Neudeck, G. W., and Liu, S. T., Appl. Phys. Lett., 53, 2543 (1988).CrossRefGoogle Scholar
5 Smith, F. W. and Ghidini, G., J. Electrochem. Soc., 129, 1300 (1982).CrossRefGoogle Scholar
6 Ghidini, G. and Smith, F. W., J. Electrochem. Soc., 131, 2924 (1984).CrossRefGoogle Scholar
7 Silvestri, V. J., Nummy, K., Ronsheim, P., Bendernagel, R., Kerr, D., Phan, V. T., Borland, J. O., and Hann, J., J. Electrochem. Soc., 137, 2323 (1990).CrossRefGoogle Scholar
8 Borland, J. and Drowley, C., Solid State Technol., 28, 141 (1985).Google Scholar
9 Harbeke, G., Semiconductor Silicon, ed. by Harbeke, G. and Schulz, M. J., 189 (Berlin: Springer-Verlag, 1989).CrossRefGoogle Scholar
10 Zanzucchi, P. J. and Duffy, M. T., Appl. Opt., 17, 3477 (1978).CrossRefGoogle Scholar
11 Russo, O. L., J. Electrochem. Soc., 127, 953 (1980).CrossRefGoogle Scholar
12 Rubloff, G. W., J. Vac. Sci. Technol., A8, 1857 (1990).CrossRefGoogle Scholar
13 Li'u, S. T., Chan, L., and Borland, J. O., Proc. 10th Int. Confer. Chemical Vapor Deposition, 428 (Pennington: The Electrochemical Society, 1987).Google Scholar
14 Lee, S. K., Ku, Y. H., and Kwong, D. L., Appl. Phys. Lett., 54, 1775 (1989).CrossRefGoogle Scholar
15 Grove, A. S., Leistiko, O., and Sah, C. T., J. Appl. Phys., 35, 2695 (1964).CrossRefGoogle Scholar