Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T10:59:52.307Z Has data issue: false hasContentIssue false

Characterization of Textured PZT Thin Films Prepared by Sol-gel Method onto Stainless Steel Substrates

Published online by Cambridge University Press:  28 January 2011

Xuelian Zhao
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, China
Xufang Yu
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, China
Shengwen Yu
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, China
Jinrong Cheng
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, China
Get access

Abstract

PbZr0.53Ti0.47O3 (PZT) ferroelectric thin films were deposited on LaNiO3 (LNO) buffered stainless steel (SS) substrates by sol-gel method. The effect of LNO buffer layer on the orientation and electric properties of PZT thin films for different thicknesses were studied. X-ray diffraction (XRD) results indicated that PZT thin films on SS substrates exhibit the (100) preferred orientation with the LNO buffer layers. Scanning electron microscope (SEM) images show that PZT thin films were well crystallized with grain size of about 100 nm. PZT thin films deposited on SS maintain the excellent ferroelectric properties with remnant polarization of about 20 μC/cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Willeng, B., Kohli, M., Brooks, K., Muralt, P. and Setter, N., J.Ferroelectrics 201, 147(1997).Google Scholar
[2] You, D. J., Jung, W. W., Choi, S. K., and Cho, Yasuo, Appl. Phys. Lett. 84, 3346 (2004).CrossRefGoogle Scholar
[3] Hea, Z. L., Wang, Y. G. and Bia, K., Solid State Communications 150, 18371839 (2010).CrossRefGoogle Scholar
[4] Fujii, T., Hishinuma, Y., Mita, T. H. and Naono, T., Sensors and Actuators 163, 220225(2010).CrossRefGoogle Scholar
[5] Wang, Y. K., Tseng, T. Y. and Lin, P., Appl. Phys. Lett. 80, 37903792 (2002).Google Scholar
[6] Morimoto, T., Hidaka, O., Yamakawa, K., Arisumi, O., Kanaya, H., Iwamoto, T., Kumura, Y., Kunishima, I. and Tanaka, S., J. Appl. Phys. 39, 21102113(2000).Google Scholar
[7] Lee, J., Johnson, L., Safari, A., Ramesh, R., Sands, T., Gilchrist, H. and Keramidas, V. G., J. Appl. Phys. Lett. 63, 2729(1993).CrossRefGoogle Scholar
[8] Nakamura, T., Nakao, Y., Kamisawa, A. and Yakasu, H., J. Appl. Phys. 33, 52075210(1994).CrossRefGoogle Scholar
[9] Bernstein, S. D., Wong, T. Y., Kisler, Y. and Tustison, R. W., J. Mater. Res. 8, 1213(1993).CrossRefGoogle Scholar
[10] Chae, B. G., Yang, Y. S., Lee, S. H., Jang, M. S., Lee, S. J., Kim, S. H., Beak, W. S. and Kwon, S. C., Thin Solid Films 410, 107113(2002).CrossRefGoogle Scholar
[11] Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V. G., Haakenaasen, R. and Fork, D. K., J. Appl. Phys. Lett. 63, 35923594(1993).CrossRefGoogle Scholar
[12] Cheng, J. R., Zhu, W. Y., Li, N. and Cross, L. E.. J. Appl. Phys. Lett. 81, 25(2002).Google Scholar
[13] Nguyen, M. D., Nazeer, H., Karakaya, K., Pham, S. V., Steenwelle, R., Dekkers, M., Abelmann, L., Blank, D. H. A. and Rijnders, G., J. Micromech. Microeng. 20, 085022(2010).CrossRefGoogle Scholar
[14] Nishida, K., Osada, M., Yokoyama, S. and Kamo, T., Key Engineering Materials 135-138, 421422 (2010).Google Scholar
[15] Lin, Y. R., Andrews, C. and Sodano, H. A., Proc. SPIE, 7644, 76440C (2010).Google Scholar
[16] Pabst, G. W., Martin, L. W., Chu, Y. H. and Ramesh, R., J. Appl. Phys. Lett. 90, 072902(2007).CrossRefGoogle Scholar