Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T07:02:59.695Z Has data issue: false hasContentIssue false

Characterization of the ZnSe/GaAs Interface Layer by Tem and Spectroscopic Ellipsometry

Published online by Cambridge University Press:  25 February 2011

R. Dahmani
Affiliation:
Departments of Chemical Physics and Materials and Nuclear Engineering, University of Maryland, College Park, MD 20742–2115
L. Salamanca-Riba
Affiliation:
Departments of Chemical Physics and Materials and Nuclear Engineering, University of Maryland, College Park, MD 20742–2115
D. P. Beesabathina
Affiliation:
Departments of Chemical Physics and Materials and Nuclear Engineering, University of Maryland, College Park, MD 20742–2115
N. V. Nguyen
Affiliation:
Semiconductor Electronics Division, NIST, Gaithersburg, Maryland 20899
D. Chandler-Horowitz
Affiliation:
Semiconductor Electronics Division, NIST, Gaithersburg, Maryland 20899
B. T. Jonker
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375–5320
Get access

Abstract

The interface between ZnSe thin films and GaAs substrates is characterized by High Resolution Transmission Electron Microscopy and room temperature Spectroscopic Ellipsometry. The films were grown on (001) GaAs by Molecular Beam Epitaxy. A three-phase model is used in the reduction of the ellipsometric data, from which the presence of a transition layer of Ga2Se3, with a thickness of less than 1 nm, is confirmed. These results corroborate the high resolution transmission electron microscopy images obtained from the same samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tu, D. W. and Kahn, A., J. Vac. Sci. Technol. A 3, 922 (1985).CrossRefGoogle Scholar
[2] Li, D., Gonsalves, J. M., Otsuka, N., Qiu, J., Kobayashi, M., and Gunshor, R. L., Appl. Phys. Lett. 57, 449 (1990).Google Scholar
[3] Qiu, J., Menke, D. R., Kobayashi, M., Gunshor, R. L., Li, D., Nakamura, Y., and Otsuka, N., Appl. Phys. Lett. 58, 2788 (1991).Google Scholar
[4] Krost, A., Richter, W., Zahn, D. R. T., Hingerl, K., and Sitter, H., Appl. Phys. Lett. 57, 1981 (1990).Google Scholar
[5] Teraguchi, N., Kato, F., Konagai, M., Takahashi, K., Nakamura, Y., and Otsuka, N., Appl. Phys. Lett. 59, 567 (1991).Google Scholar
[6] Jonker, B. T., Krebs, J. J., Qadri, S. B., and Prinz, G. A., Appl. Phys. Lett. 50, 848 (1987).Google Scholar
[7] Candela, A. and Chandler-Horowitz, D., SPIE 480, 2 (1984).Google Scholar
[8] Aspnes, D. E., Thin Solid Films 89, 249 (1982).CrossRefGoogle Scholar
[9] Bruggeman, D. A. G., Ann. Phys. (Leipzig) 24, 636 (1935).CrossRefGoogle Scholar
[10] Colbow, K. M., Gao, Y., Tiedje, T., Dahn, J. R., and Eberhardt, W., J. Vac. Sci. Technol. A 9, 2614 (1991).Google Scholar
[11] Park, K-H., Kim, H-G., Kim, W-T., Kim, C-D., Jeong, H-M., Lee, K-J., and Lee, B-H., Solid State Commun. 70, 971 (1989).Google Scholar
[12] Dahmani, R., Salamanca-Riba, L., Nguyen, N. V., Chandler-Horowitz, D., and Jonker, B. T. (to be published).Google Scholar
[13] Palik, E., in Handbook on Optical Constants of Solids I, edited by Palik, E. (Academic Press, Orlando, 1985), p. 429.Google Scholar