Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T05:16:50.705Z Has data issue: false hasContentIssue false

Chemical Bias Coupled Photoelectrochemical Zero Bias Hydrogen Generation Utilizing Self-Assembled TiO2 Nanoarchitecture Electrode

Published online by Cambridge University Press:  26 November 2013

Masataka Sato
Affiliation:
Department of Chemistry, Fukushima National College of Technology (FNCT), Iwaki, Fukushima 970-8034, Japan
Yoichi Kamo
Affiliation:
Department of Chemistry, Fukushima National College of Technology (FNCT), Iwaki, Fukushima 970-8034, Japan
Kenji Sakamaki
Affiliation:
Department of Chemistry, Fukushima National College of Technology (FNCT), Iwaki, Fukushima 970-8034, Japan
Get access

Abstract

Photoelectrochemical zero bias hydrogen generation has been achieved with self-assembled nanoporous anatase type TiO2 (SANAT) photoelectrode and chemical bias. The SANAT fabricated using halogen free conventional electrolytes by anodization exhibits more than 2 times superior performance to rutile single crystal electrodes in photoelectrolysis of water. The chemical bias assisted cell consists of two separate compartments connected by a liquid junction. The SANAT anode is immersed in alkaline electrolyte, Pt cathode is in acidic electrolyte. The use of electrolytes of two different pH values produces a chemical bias of 0.059 ∆pH V due to the proton concentration gradient. Under zero bias condition, photocurrent sufficient for photolysis of water was observed. Hydrogen evolution was visible at counter electrode without the application of any external voltage. We call this system fuel type photoelectrochemical zero bias hydrogen generation or water splitting.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujishima, A. and Honda, K., Nature, 238, 37 (1972).10.1038/238037a0CrossRefGoogle Scholar
Fujishima, A., Kohayakawa, K. and Honda, K., Bull. Chem. Soc. Jpn., 48, 1041 (1975).10.1246/bcsj.48.1041CrossRefGoogle Scholar
Fujishima, A., Kohayakawa, K. and Honda, K., J. Electrochem. Soc., 122, 1487 (1975).10.1149/1.2134048CrossRefGoogle Scholar
Nozik, A. J., Nature, 257, 383 (1975).10.1038/257383a0CrossRefGoogle Scholar
Watanabe, T., Fujishima, A. and Honda, K., Bull. Chem. Soc. Jpn., 49, 355 (1976).10.1246/bcsj.49.355CrossRefGoogle Scholar
Akikusa, J. and Khan, S. U. M., Int. J. Hydrogen Energy, 22, 875 (1997).10.1016/S0360-3199(96)00235-2CrossRefGoogle Scholar
Bak, T., Nowotny, J., Rekas, M. and Sorrell, C.C., Int. J. Hydrogen Energy, 27, 19 (2002).10.1016/S0360-3199(01)00090-8CrossRefGoogle Scholar
Kamo, Y. and Sakamaki, K., NCSS2010, Chiba, Japan, Sept. 19–22, Abstr., No. 1PD31, p.164 (2010).Google Scholar
Sakamaki, K. and Kamo, Y., 62 nd ISE, Niigata, Japan, Sept. 11–16, Abstr., No. s9-P-041 (2011).10.1088/1475-7516/2011/11/041CrossRefGoogle Scholar
Sakamaki, K., Kamo, Y. and Uchida, K., IACIS2012, Sendai, Japan, May 13–18, Abstr., No. S5P16-03 (2012).Google Scholar
Sato, M., Kamo, Y. and Sakamaki, K., The 93rd Spring Meeting of Chem. Soc. Jpn., Shiga, Japan, Mar., 22–25, Abstr., 1PB-029 (2013).Google Scholar
Endo, H., Sato, M., Kamo, Y. and Sakamaki, K., 2013 Autumn Meeting of The Electrochem. Soc. Jpn, Tokyo, Japan, Sept., 27-28, Abstr., No. 2K18, p. 194 (2013).Google Scholar
Izumi, F. and Momma, K., Solid. State Phenom., 130, 15 (2007).10.4028/www.scientific.net/SSP.130.15CrossRefGoogle Scholar
Roy Morrison, S., Electrochemistry at Semiconductor and Oxidized Metal Electrodes, (Plenum Press, New York, 1980).10.1007/978-1-4613-3144-5CrossRefGoogle Scholar