Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T01:05:19.971Z Has data issue: false hasContentIssue false

Chemical Modification on Hierarchically Structured ZnO Films for Energy Conversion Efficiency Enhancement of Dye-Sensitized Solar Cells

Published online by Cambridge University Press:  01 February 2011

Qifeng Zhang
Affiliation:
qfzhang@u.washington.edu, University of Washington, Materials Science and Engineering, Seattle, WA, 98195, United States
Samson A Jenekhe
Affiliation:
jenekhe@u.washington.edu, University of Washington, Chemical Engineering, Seattle, WA, 98195, United States
Guozhong Cao
Affiliation:
gzcao@u.washington.edu, University of Washington, Materials Science and Engineering, Seattle, WA, 98195, United States
Get access

Abstract

We report the synthesis of ZnO aggregates in the presence of lithium salt and the enhancement on the energy conversion efficiency of dye sensitized solar cells when the photoelectrode films consist of as-synthesized ZnO aggregates. The conversion efficiency for ZnO film consisting of aggregates synthesized with lithium involvement is significantly improved up to 5.8%, which is 32% higher than that of 4.4% obtained for pure ZnO film. Such an enhancement can be attributed to the effect of lithium-induced changes on the morphology and crystallinity of aggregates, the optical absorption of films, and the surface chemistry of ZnO, which provides the film with decreased electron trapping and increased refractive index, and enhances the electronic coupling between the dye molecules and ZnO.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gratzel, M. Journal of Photochemistry and Photobiology a-Chemistry 164, 3 (2004).Google Scholar
2 Gratzel, M. Journal of Photochemistry and Photobiology C-Photochemistry Reviews 4, 145 (2003).Google Scholar
3 Gratzel, M. Journal of Sol-Gel Science and Technology 22, 7 (2001).Google Scholar
4 Suri, P. Panwar, M. Mehra, R. M. Materials Science-Poland 25, 137 (2007).Google Scholar
5 Bergeron, B. V. Marton, A. Oskam, G. Meyer, G. J. Journal of Physical Chemistry B 109, 937 (2005).Google Scholar
6 Sayama, K. Sugihara, H. Arakawa, H. Chemistry of Materials 10, 3825 (1998).10.1021/cm980111lGoogle Scholar
7 Kroon, J. M. Bakker, N. J. Smit, H. J. P., Liska, P. Thampi, K. R. Wang, P. Zakeeruddin, S. M., Gratzel, M. Hinsch, A. Hore, S. Wurfel, U. Sastrawan, R. Durrant, J. R. Palomares, E., Pettersson, H. Gruszecki, T. Walter, J. Skupien, K. Tulloch, G. E. Progress in Photovoltaics 15, 1 (2007).10.1002/pip.707Google Scholar
8 Kaidashev, E. M. Lorenz, M. Wenckstern, H. von, Rahm, A. Semmelhack, H. C. Han, K. H. Benndorf, G. Bundesmann, C. Hochmuth, H. Grundmann, M. Applied Physics Letters 82, 3901 (2003).Google Scholar
9 Dittrich, T. Lebedev, E. A. Weidmann, J. Physica Status Solidi a-Applied Research 165, R5 (1998).10.1002/(SICI)1521-396X(199802)165:2<R5::AID-PSSA99995>3.0.CO;2-93.0.CO;2-9>Google Scholar
10 Otsuka, A. Funabiki, K. Sugiyama, N. Yoshida, T. Chemistry Letters 35, 666 (2006).10.1246/cl.2006.666Google Scholar
11 Zeng, L. Y. Dai, S. Y. Xu, W. W. Wang, K. J. Plasma Science & Technology 8, 172 (2006).Google Scholar
12 Lee, W. J. Suzuki, A. Imaeda, K. Okada, H. Wakahara, A. Yoshida, A. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 43, 152 (2004).10.1143/JJAP.43.152Google Scholar
13 Baxter, J. B. Walker, A. M. Ommering, K. van, Aydil, E. S. Nanotechnology 17, S304 (2006).Google Scholar
14 Baxter, J. B. Aydil, E. S. Applied Physics Letters 86, (2005).Google Scholar
15 Law, M. Greene, L. E. Johnson, J. C. Saykally, R. Yang, P. D. Nature Materials 4, 455 (2005).10.1038/nmat1387Google Scholar
16 Martinson, A. B. F. Elam, J. W. Hupp, J. T. Pellin, M. J. Nano Letters 7, 2183 (2007).10.1021/nl070160+Google Scholar
17 Horiuchi, H. Katoh, R. Hara, K. Yanagida, M. Murata, S. Arakawa, H. Tachiya, M. Journal of Physical Chemistry B 107, 2570 (2003).Google Scholar
18 Keis, K. Lindgren, J. Lindquist, S. E. Hagfeldt, A. Langmuir 16, 4688 (2000).Google Scholar
19 Chou, T. P. Zhang, Q. F. Fryxell, G. E. Cao, G. Z. Advanced Materials 19, 2588 (2007).Google Scholar
20 Zhang, Q. F. Chou, T. P. Russo, B. Jenekhe, S. A. Cao, G. Z. Angew. Chem. Int. Ed. (2008). (Published Online: Feb 19 2008, DOI: 10.1002/anie.200704919)Google Scholar
21 Jezequel, D. Guenot, J. Jouini, N. Fievet, F. Materials Science Forum 152-5, 339, (1994).10.4028/www.scientific.net/MSF.152-153.339Google Scholar
22 Mittemeijer, E. J. Scardi, P. Diffraction analysis of the microstructure of materials, Springer, Berlin; New York (2004).Google Scholar
23 Fan, Z. Y. Lu, J. G. Journal of Nanoscience and Nanotechnology 5, 1561 (2005).Google Scholar
24 Ohya, Y. Saiki, H. Tanaka, T. Takahashi, Y. Journal of the American Ceramic Society 79, 825 (1996).Google Scholar
25 Fujihara, S. Sasaki, C. Kimura, T. Journal of the European Ceramic Society 21, 2109 (2001).Google Scholar
26 Ishimaru, A. Wave propagation and scattering in random media, Academic Press, New York (1978).Google Scholar
27 Hulst, H. C.v. d. Light scattering by small particles, Wiley, New York (1957).Google Scholar
28 Aghamalyan, N. R. Goulanian, E. K. Hovsepyan, R. K. Vardanyan, E. S. Zerrouk, A. F. Physica Status Solidi a-Applied Research 199, 425 (2003); X. S. Wang, Z. C. Wu, J. F. Webb, Z. G. Liu, Applied Physics a-Materials Science & Processing 77, 561 (2003).10.1002/pssa.200306678Google Scholar
29 Chou, T. P. Zhang, Q. F. Cao, G. Z. Journal of Physical Chemistry C 111, 18804 (2007).Google Scholar
30 Kakiuchi, K. Hosono, E. Fujihara, S. Journal of Photochemistry and Photobiology a-Chemistry 179, 81 (2006).Google Scholar
31 Hagfeldt, A. Gratzel, M. Accounts of Chemical Research 33, 269 (2000).Google Scholar
32 Gratzel, M. Progress in Photovoltaics 8, 171 (2000).10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U3.0.CO;2-U>Google Scholar