Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:58:39.276Z Has data issue: false hasContentIssue false

Cl2-Based Dry Etching Of The AIGaInN System In Inductively Coupled Plasmas

Published online by Cambridge University Press:  10 February 2011

Hyun Cho
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
C. B. Vartuli
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
C. R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
S. M. Donovan
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Cl2-based Inductively Coupled Plamas with low additional dc self-biases(−100V) produce convenient etch rates(500–1500Å.min−1) for GaN, AIN, InN, InAiN and InGaN. A systematic study of the effects of additive gas(Ar, N2, H2), discharge composition and ICP source power and chuck power on etch rate and surface morphology has been performed. The general trends are to go through a maximum in etch rate with percent C12 in the discharge for all three mixtures, and to have an increase(decrease) in etch rate with source power(pressure). Since the etching is strongly ion-assisted, anisotropic pattern transfer is readily achieved. Maximum etch selectivities of approximately 6 for InN over the other nitrides were obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gillis, H.P., Choutov, D.A. and Martin, K.P., JOM 48 50 (1996).Google Scholar
2. Shul, R.J., in GaN and Related Materials, edited by Pearton, S.J. (Gordon and Breach, New York, 1997).Google Scholar
3. Adesida, I., Mahajan, A., Andideh, E., Khan, M.A., Olsen, D.T. and Kuznia, J.N., Appl. Phys. Lett. 63 2777 (1993).Google Scholar
4. Lin, M.E., Fan, Z.F., Ma, Z., Allen, L.H. and Morkoc, H., Appl. Phys. Lett. 64 887 (1994).Google Scholar
5. Lee, H., Oberman, D.B. and Harris, J.S. Jr.,, Appl. Phys. Lett. 67 1754 (1995).Google Scholar
6. Pletschen, W., Niegurch, R. and Bachem, K.H., Proc. Symp. Wide Bandgap Semiconductors and Devices, Vol.95–21 (Electrochemical Society, Dennington NJ 1995) pp. 241.Google Scholar
7. Pearton, S.J., Abernathy, C.R. and Ren, F., Appl. Phys. Lett. 64 2294 (1994).Google Scholar
8. Zhang, L., Ramer, J., Brown, J., Zheng, K., Lester, L.F. and Hersee, S.D., Appl. Phys. Lett. 68 367 (1996).10.1063/1.116718Google Scholar
9. Shul, R.J., Briggs, R.D., Pearton, S.J., Vartuli, C.B., Abernathy, C.R., Lee, J.W., Constantine, C. and Barratt, C., Mat. Res. Soc. Syrup. Proc. 449 (1997) pp. 969.Google Scholar
10. Aktas, O., Fan, Z., Mohammad, S.N., Botcharev, A. and Morkoc, H., Appl. Phys. Lett. 69 25 (1996).Google Scholar
11. Khan, M.A., Kuznia, J.N., Shur, M.S., Eppens, C., Burm, J. and Schaff, W., Appl. Phys. Lett. 66 1083 (1995).Google Scholar
12. Wu, Y.F., Keller, B.P., Keller, S., Kapolnek, D., DenBaars, S.D. and Mishra, U.K., IEEE Electron Dev. Lett. 17 455 (1996).10.1109/55.536291Google Scholar
13. Khan, M.A., Chen, Q., Shur, M.S., McDermott, B.T., Higgins, J.A., Burm, J., Schaff, W. and Eastman, L.F., Electron. Lett. 32 357 (1996).10.1049/el:19960206Google Scholar
14. Wu, Y.F., Keller, S., Kozodoy, P., Keller, B.P., Parikh, P., Kapolnek, D., Denbaars, S.P. and Mishra, V.K., IEEE Electron. Dev. Lett. 18 290 (1997).Google Scholar
15. Abernathy, C.R., J. Vac. Sci. Technol. A 11 869 (1993).Google Scholar
16. Abernathy, C.R., Mat. Sci. Eng. Rep. R 14 203 (1995).Google Scholar
17. Lee, J.W., Hong, J. and Pearton, S.J., Appl. Phys. Lett. 68 847(1996).10.1063/1.116553Google Scholar
18. McNevin, S.C., J. Vac. Sci. Technol. B 4 1203 (1986).Google Scholar
19. Vernon, M., Hayes, T.R. and Donnelly, V.M., J. Vac. Sci. Technol. A 10 3499 (1992).Google Scholar
20. Pearton, S.J., Abernathy, C.R., Ren, F. and Lothian, J.R., J. Appl. Phys. 76 1210 (1994).Google Scholar
21. Burm, J., Chu, K., Schaff, W.J., Eastman, L.F., Khan, M.A., Chen, Q., Yang, J.W. and Shur, M.S., IEEE Electron Dev. Lett. 18 141 (1997).Google Scholar
22. Donovan, S.M., MacKenzie, J.D., Abernathy, C.R., Pearton, S.J., Ren, F., Jones, K. and Cole, M., Appl. Phys. Lett. 70 2592 (1997).Google Scholar
23. Ren, F., Abernathy, C.R., Pearton, S.J. and Wisk, P.W., Appl. Phys. Lett. 64 1508 (1994); F. Ren, R.J. Shul, C.R. Abernathy, S.N.G. Chu, J.R. Lothian and S.J. Pearton, Appl. Phys. Lett. 66 1503 (1995).Google Scholar
24. Vartuli, C.B., Pearton, S.J., Lee, J.W., Abernathy, C.R., MacKenzie, J.D., Zolper, J.C., Shul, R.J. and Ren, F., J. Electrochem. Soc. 143 3681 (1996).Google Scholar