Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T16:11:38.831Z Has data issue: false hasContentIssue false

Classical MD Simulation of Hydrogen Absorption in F.C.C. and B.C.C. Nanoparticles

Published online by Cambridge University Press:  06 September 2011

Hiroshi Ogawa
Affiliation:
NRI, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
Phung Thi Viet Bac
Affiliation:
NRI, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
Get access

Abstract

Hydrogen absorption in metallic nanoparticles was investigated by classical molecular dynamics (MD) simulation. We used a simple model composed of an isolated f.c.c. or b.c.c. nanoparticle of 1, 1.4, 2, 4, 6, 8 and 10 nm in diameter and surrounding hydrogen atoms. The simulated particle sizes are which correspond to about 50 to 44000 atoms. In the case of f.c.c. nanoparticles, atomic configuration with five-fold symmetries was observed in both hydrogenfree and hydrogenated particles smaller than 2 nm. The f.c.c. structure was maintained in larger particles than 4 nm with lattice deformation which varies with M-H interaction. The b.c.t. structure was observed in hydrogenated b.c.c. nanoparticles. Number of H atoms absorbed in a nanoparticle varies depending on particle size and M-H interaction: it increases with increasing particle size and M-H bond strength.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mutschele, T., Kirchheim, R., Scr. Metall. 21 (1987) 1101.10.1016/0036-9748(87)90258-4Google Scholar
2. Stuhr, U., Wipf, H., Udovic, T.J., Weissmuller, J., Gleiter, H., J. Phys. Cond. Matter 7 (1995) 219.Google Scholar
3. Zluski, L., Zaluska, A., Ström-Olsen, J.O., J. Alloys Comp. 253- 4 (1997) 70.Google Scholar
4. Natter, H., Wettmann, B., Heisel, B., Hempelmann, R., J. Alloys Comp. 253- 4 (1997) 84.Google Scholar
5. Pundt, A., Sachs, C., Winter, M., Reetz, M.T., Fritsch, D., Kirchheim, R., J. Alloy Comp. 293-5 (1999) 480.10.1016/S0925-8388(99)00469-7Google Scholar
6. Suleiman, M., Jisrawi, N.M., Dankert, O., Reetz, M.T., Bähtz, C., Kirchheim, R., Pundt, A., J. Alloy Comp. 356- 7 (2003) 644.Google Scholar
7. Pundt, A., Kirchheim, R., Ann. Rev. Mater. Res. 36 (2006) 555.10.1146/annurev.matsci.36.090804.094451Google Scholar
8. Yamauchi, M., Ikeda, R., Kitagawa, H., Tanaka, M., J. Phys. Chem. C 112 (2008) 3294.Google Scholar
9. Yamauchi, M., Kobayashi, H., Kitagawa, H., Chem. Phys. Chem. 10 (2009) 2566.Google Scholar
10. Klots, T.D., Winter, B.J., Parks, E.K., Riley, S.J., Chem. Phys. 95 (1991) 8919.Google Scholar
11. Daw, M. S., Baskes, M. I., Phys. Rev. B, 29 (1984) 6443.Google Scholar
12. Fukai, Y., The Metal Hydrogen System, Chapter 7 (Springer, 1993).Google Scholar
13. Løvvik, O. M., Opalka, S. M., Phys. Rev B, 71 (2005) 054103.10.1103/PhysRevB.71.054103Google Scholar
14. Ogawa, H., Tezuka, A., Wang, H., Ikeshoji, T., Katagiri, M., Mater. Trans., 49 (2008) 1983.10.2320/matertrans.MAW200813Google Scholar
15. Ogawa, H., Tezuka, A., Wang, H., Ikeshoji, T., Katagiri, M., Int. J. Nanosci., 8 (2009) 39.10.1142/S0219581X09005645Google Scholar
16. Ogawa, H., J. Alloys Comp. (2011) in press.Google Scholar
17. Ogawa, H., Mater. Trans., 52 (2011) in press.Google Scholar
18. Finnis, M. W., Sinclair, J. E., Phil. Mag. A 50 (1984) 45.Google Scholar
19. Ackland, G.J., Tichy, G., Vitek, V., Finnis, M.W., Phil. Mag. A 56 (1987) 735.Google Scholar
20. Ruda, M., Farkas, D., Abriata, J., Phys. Rev. B, 54 (1996) 9765.10.1103/PhysRevB.54.9765Google Scholar