Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:58:29.483Z Has data issue: false hasContentIssue false

A Comparative Study of Mechanical Properties in Ion-Irradiated A12O3 and MgO·nAl203

Published online by Cambridge University Press:  15 February 2011

K. Yasuda
Affiliation:
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan, ysktne@mbox.nc.kyushu-u.ac.jp
C. Kinoshita
Affiliation:
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan, ysktne@mbox.nc.kyushu-u.ac.jp
K. Izumi
Affiliation:
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan, ysktne@mbox.nc.kyushu-u.ac.jp
Get access

Abstract

We have investigated radiation hardening in alumina (A1203), stoichiometric and nonstoichiometric spinel (MgO·nA1203: n= 1, 2.4) crystals at 300 K irradiated with 100 keV He+ ions by using a ultra-microhardness technique. Al203 shows a remarkable radiation hardening (35% increase in hardness) at a fluence of 5×1019 He+/m2 and saturates at 60 % of the maximum value at fluences higher than 8×1019 He+/m2. In spinel crystals, hardness increases monotonically with fluence, reaching to a saturation at a fluence of 1×1020He+/m2. Analyses of load- displacement curves indicate that both plastic and elastic hardening are responsible for the radiation hardening in A1203, and that plastic hardening is the main cause in MgO'nAl2O3. Microstructure observations and lattice constant measurements showed that point defects are mainly responsible for the radiation hardening in both A1203 and MgO·nAl2O3. The difference in the radiation hardening response is discussed in terms of the difference in recombination rate of point defects among the MgO-A1203 system ceramics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. for example, Yamamoto, S., in Diagnostics for Experimental Thermonuclear Fusion Reactors 2, edited by Scott, P.E. et al. (Pergamon Presss, New York, 1998), pp.269278.Google Scholar
2. Kinoshita, C. and Zinkle, S.J., J. Nucl. Mater. 233–237, 100 (1996).Google Scholar
3. Clinard, F.W. Jr., Hurley, G.F. and Hobbs, L.W., J. Nucl. Mater. 108–109, 655 (1982).Google Scholar
4. Hobbs, L.W., Clinard, F.W. Jr., J. Phys. 41, C6232 (1980).Google Scholar
5. Sickafus, K.E., Larson, A.C., Yu, N. et al. , J. Nucl. Mater. 219, 129 (1995).Google Scholar
6. Zinkle, S.J., J. Nucl. Mater. 219, 113 (1995).Google Scholar
7. K, Yasuda, Kinoshita, C., Morisaki, R. and Abe, H., Philos. Mag. A, 78, 583 (1998).Google Scholar
8. Dienst, W., J. Nucl. Mater. 211, 186 (1994).Google Scholar
9. Clinard, F. W. Jr., Dienst, W. and Famum, E.H., J. Nucl. Mater. 212–215, 1075 (1994).Google Scholar
10. Li, Z., Chan, S. K., Garner, F. A. and Bradt, R. C., J. Nucl. Mater. 219, 139 (1995).Google Scholar
11. Devanathan, R., Yu, N., Sickafus, K., Nastasi, M., J. Nucl. Mater. 232, 59 (1996).Google Scholar
12. Zinkle, S.J., J. Am Ceram. Soc. 72, 1343 (1989).Google Scholar
13. Izumi, K., Yasuda, K., Kinoshita, C. and Kutsuwada, M., J. Nucl. Mater. in press (1998).Google Scholar
14. Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon, New York, 1985.Google Scholar
15. Oliver, W.C., McHargue, C.J., J. Mater. Res. Soc. Symp. Proc. 24, 515 (1992).Google Scholar
16. Berriche, R., Scripta Metall. 32, 617 (1995).Google Scholar
17. Throne, R.P., Howard, V.C., Proc. Brit.Ceram. Soc. 7, 409 (1967).Google Scholar
18. Wilkes, J.. Nucl. Mater. 26, 137 (1968).Google Scholar
19. Zinkle, S.J., Pells, G.P., J. Nucl. Mater. 253, 120 (1998).Google Scholar
20. Kinoshita, C., J. Nucl. Mater. 191–194, 67 (1992).Google Scholar
21. Kinoshita, C., Fukumoto, K. and Nakai, K., Ann. Chim. Fr., 16, 379 (1991).Google Scholar