Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T01:20:05.779Z Has data issue: false hasContentIssue false

Comparison of Crack Geometry Determined with Phase Contrast Radiography and with Microtomography

Published online by Cambridge University Press:  21 March 2011

S.R. Stock
Affiliation:
School of Materials Sci & Eng, Georgia Inst of Technology, Atlanta, GA 30332-0245, USA
K. Ignatiev
Affiliation:
School of Materials Sci & Eng, Georgia Inst of Technology, Atlanta, GA 30332-0245, USA
W.K. Lee
Affiliation:
Advanced Photon Source, User Program Div, Argonne National Lab, IL, USA
K. Fezzaa
Affiliation:
Advanced Photon Source, User Program Div, Argonne National Lab, IL, USA
G.R. Davis
Affiliation:
Dental Biophysics, Queen Mary, University of London, London, UK
J.C. Elliott
Affiliation:
Dental Biophysics, Queen Mary, University of London, London, UK
Get access

Abstract

X-ray microtomography of the three-dimensional spatial distribution of crack opening as a function of applied load has helped clarify important processes of roughness-induced fatigue crack closure. Fracture mechanics dictates sample geometries which limit the crack opening sensitivity that can be obtained with microtomography, and there is a real need to be able to quantify smaller openings. Synchrotron phase contrast radiographs of an AA 2090 T8E41 (central 2 mm of a 12.7 mm thick plate) compact tension sample show the fatigue crack geometry clearly while absorption contrast radiographs of the same sample have difficulty even detecting the crack. The phase contrast expected in the projection images is determined from the microtomography-derived, three-dimensional crack geometry and compared to that observed experimentally. Good agreement is obtained between the phase contrast radiographs and the expected pattern of contrast.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rao, K.T. Venkateswara, Yu, W. and Ritchie, R.O., Met Trans 19A (1988) 549569.Google Scholar
2. Yoder, G.R., Pao, P.S., Imam, M.A., and Cooley, L.A., in Proc 5th Int Conf on Aluminum- Lithium Alloys (Mater Comp Eng Publ Ltd, Birmingham, UK, 1989) 10331041.Google Scholar
3. Christensen, R.H., Appl Mater Res October (1963) 207210.Google Scholar
4. Elber, W., in Damage Tolerance in Aircraft Structures, ASTM STP 486 (1971) 230242.Google Scholar
5. Ritchie, R.O., in Fatigue Thresholds (Eng Adv Serv, Warley, UK, 1981) 503526.Google Scholar
6. Ritchie, R.O., Mater Sci Eng A103 (1988) 1528.Google Scholar
7. Yoder, G.R., Pao, P.S., Imam, M.A. and Cooley, L.A., Scr Met 22 (1988) 12411244.Google Scholar
8. Pao, P.S., Imam, M.A., Cooley, L.A. and Yoder, G.R., Scr Met 23 (1989) 14551460.Google Scholar
9. Haase, J.D., “Microbeam Diffraction Mapping of Microtexture in Al-Li 2090 T8E41,” MS Thesis, Georgia Institute of Technology, 1998.Google Scholar
10. Haase, J.D., Guvenilir, A., Witt, J.R. and Stock, S.R., Acta Mater 46 (1998) 47914799.Google Scholar
11. Haase, Jake D., Guvenilir, Abbas, Witt, Jason R., Langøy, Morten A. and Stock, Stuart R., in Mixed-Mode Crack Behavior, ASTM STP 1359 (1999) 160173.Google Scholar
12. Guvenilir, A., Breunig, T.M., Kinney, J.H. and Stock, S.R., Acta Mater 45 (1997) 19771987.Google Scholar
13. Guvenilir, A. and Stock, S.R., Fatigue Fracture Eng Mater Struct 21(1998) 439450.Google Scholar
14. Guvenilir, A., Breunig, T.M., Kinney, J.H. and Stock, S.R., Phil Trans Roy Soc (Lon) 357 (1999) 27552775.Google Scholar
15. Guvenilir, A., Stock, S.R., Barker, M.D. and Betz, R.A., in 4th Int Conf on Al Alloys: Their Physical and Mechanical Properties, Vol. II, (Georgia Inst Technol, 1994) 413419.Google Scholar
16. Morano, R., Stock, S.R., Davis, G.R. and Elliott, J.C., in MRS Proc 591 (2000) 3135.Google Scholar
17. Stock, S.R., Int Mater Rev 44 (1999) 141164.Google Scholar
18. Breunig, T.M., Elliott, J.C., Stock, S.R., Anderson, P., Davis, G.R. and Guvenilir, A., in X-ray Microscopy III, (Springer-Verlag, 1992) pp. 465468.Google Scholar
19. Breunig, T.M., Stock, S.R., Guvenilir, A., Elliott, J.C., Anderson, P. and Davis, G.R., Composites 24 (1993) 209213.Google Scholar
20. Beckmann, F., Bonse, U. and Biermann, T, in Developments in X-Ray Tomography II, SPIE 3772 (SPIE, 1999) pp. 179187 Google Scholar
21. Momose, A., Takeda, T., Itai, Y., Tu, J. and Hirano, K., in Developments in X-Ray Tomography II, SPIE 3772 (SPIE, 1999) pp. 188195.Google Scholar
22. Chapman, D., Thomlinson, W., Johnson, R.E., Washburn, D., Pisano, E., Gmur, N., Zhong, Z., Menk, R., Arfelli, F. and Sayers, D., Phys Med Biol 42 (1997) 20152025.Google Scholar
23. Davis, T.J., Gao, D., Gureyev, T.E., Stevenson, A.W. and Wilkins, S.W., Nature 373 (1995) 595598.Google Scholar
24. Snigerev, A., Snigereva, I., Kohn, V., Kuznetsov, S. and Schelokov, I., Rev Sci Instrum 66 (1995) 54865492.Google Scholar
25. Cloetens, P., Barrett, R., Baruchel, J., Guigay, J.P. and Schlenker, M., J Phys D: Appl Phys 29 (1996) 133146.Google Scholar
26. Rao, K.T. Venkateswara and Ritchie, R.O., Int Mater Rev 37 4 (1992) 153185.Google Scholar
27. Davis, G.R. and Elliott, J.C., Nucl Instrum Meth A394 (1997) 157162.Google Scholar