Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T01:03:41.499Z Has data issue: false hasContentIssue false

Complex Material Using β-Cyclodextrins and Nickel-Zinc Ferrite to Obtain a Magnetically Targetable Drug Carrier

Published online by Cambridge University Press:  17 March 2011

Alberto Bocanegra
Affiliation:
Universidade Federal de Minas Gerais, ICEx, Dept. of Chemistry, Avenida Antônio Carlos 6627, CEP 31270-901, Belo Horizonte, BRAZIL, nelcy@dedalus.lcc.ufmg.br
Nelcy D. S. Mohallem
Affiliation:
Universidade Federal de Minas Gerais, ICEx, Dept. of Chemistry, Avenida Antônio Carlos 6627, CEP 31270-901, Belo Horizonte, BRAZIL, nelcy@dedalus.lcc.ufmg.br
Rubén D. Sinisterra
Affiliation:
Universidade Federal de Minas Gerais, ICEx, Dept. of Chemistry, Avenida Antônio Carlos 6627, CEP 31270-901, Belo Horizonte, BRAZIL, nelcy@dedalus.lcc.ufmg.br
Get access

Abstract

In this study we describe the preparation and the characterization of a complex material using β-cyclodextrin covalently bound to Ni-Zn ferrite to obtain a magnetically targetable drug carrier. The physical-chemical characterization was performed through Fourier transformed infrared spectroscopy, X-ray diffraction, XRD, thermal analysis (TG/DTA), and atomic absorption spectroscopy. The results pointed out that β-cyclodextrin is externally covalently bound to Ni-Zn ferrite. However it was also verified that the β-cyclodextrin cavity is free and can include bioactive agents. The most interesting feature of this approach is the combination of magnetic properties and the host:guest technology to obtain an efficient targetable drug carrier system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Uekama, K., Adv. Drug Ver. 36, 1 (1999); F. Hirayama and K. Uekama, Adv. Drug Ver 36, 125 (1999).Google Scholar
2. Saenger, W., Angew. Chem. Int. Ed. Engl. 19, 344362 (1980).Google Scholar
3. Häfeli, U., Schütt, W., Teller, J., and Zborowski, M., Scientific and Clinical Applications of Magnetic Carriers, ed. (Plenum Press, New York, 1997), p. 484.Google Scholar
4. Grüttner, C., Rudershausen, S. and Teller, J., J. Magn. Magn. Mater. 225, 17 (2001); C. Bergemann, D. Müller-Schulte, J. Oster, L.. Brassard, and Lübbe; J. Magn. Magn. Mater. 194, 45-52 (1999); D. K.. Kim, Y. Zhang, W. Voit, K.V. Rao, and M. Muhammed, J. Magn. Magn. Mater 225, 30-36 (2001); C. Grüttner and J. Teller,; Ibid, 194, 8-15 (1999); L. Q. Yu, L.J. Zhen, and X. Yang, Mat. Chem. Phys. 66, 6-9 (2000).Google Scholar
5. Häfeli, U. O. and Pauer, G. J., J. Magn. Magn. Mater. 194, 7682 (1999).Google Scholar
6. Valenzuela, R., Magnetic Ceramics; (Cambridge University Press, Cambridge, England, (1994), pp 16.Google Scholar
7. Coly, J. M. D. and Fabris, J. D., Rev. Fis. Apl. Insti. 7, 25 (1982).Google Scholar
8. Passos, A. C., Silva, A..C.L., Valente, G.C., Mohallen, N. D. S., Anais do 39° Congresso Brasileiro de Cerâmica, águas de Lindóia, São Paulo, 774779, 10 a 13 de Junho de 1995.Google Scholar
9.JCPOS, Mineral Powder Diffraction File, (International Center for Diffraction Date, U.S.A., (1982), 8-324 file.Google Scholar
10. Kohata, S., Jyodoi, K., Ohyoshi, A., Thermochim. Act. 217, 187198 (1993).Google Scholar
11. Wenz, G., Angew. Chem. Int. Ed. Engl. 33, 803822 (1994).Google Scholar