Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T14:18:45.407Z Has data issue: false hasContentIssue false

Composition, Bonding state, and Electrical Properties of Carbon Nitride Films Formed by Electrochemical Deposition Technique

Published online by Cambridge University Press:  02 March 2011

Hideo Kiyota
Affiliation:
Department of Mechanical Systems Engineering, Tokai University, 9-1-1 Toroku, Kumamoto 862-8652, Japan
Mikiteru Higashi
Affiliation:
Department of Mechanical Systems Engineering, Tokai University, 9-1-1 Toroku, Kumamoto 862-8652, Japan
Tateki Kurosu
Affiliation:
Department of Applied Computer Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
Masafumi Chiba
Affiliation:
Department of Materials Chemistry, Tokai University, 317 Nishino, Numazu, Shizuoka 410-0395, Japan
Get access

Abstract

Composition, bonding state, and electrical properties of CNx films formed by electro-chemical deposition using liquid acrylonitrile were studied. X-ray photoelectron spectra reveal that C, N, and O are major components of the deposited films. From analysis of C 1s and N 1s spectra, the major bonding state in the CNx film is attributed to a mixture of C≡N and partially hydrogenated C=N bond. Metal-insulator-semiconductor capacitors incorporating the CNx insulating layers are fabricated to evaluate the electrical properties of the deposited films. The lowest dielectric constant k of the CNx film is determined to be 2.6 from the accumulation capacitance and the thickness of the film. It is demonstrated that the CNx film formed by electrochemical deposition is a promising low-k material for use in ultralarge-scale integration multilevel interconnections.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Aoki, H., Masuzumi, T., Hara, M., Watanabe, D., Kimura, C., and Sugino, T., Thin Solid Films 518, 2012 (2010).Google Scholar
2. Tokuyama, S., Hara, M., Mazumder, M. K., Watanabe, D., Kimura, C., Aoki, H., and Sugino, T., Jpn. J. Appl. Phys. 47, 2492 (2008).10.1143/JJAP.47.2492Google Scholar
3. Wang, Z.L., Li, J.J., Sun, Z.H., Li, Y.L., Luo, Q., Gu, C.Z., and Cui, Z., Appl. Phys. Lett. 90, 133118 (2007).Google Scholar
4. Grill, A. and Patel, V., J. Appl. Phys. 104, 024113 (2008).10.1063/1.2959341Google Scholar
5. Aono, M. and Nitta, S., Diamond Relat. Mater. 11, 1219 (2002).Google Scholar
6. Muhl, S. and Mendez, J. M., Diamond Relat. Mater. 8, 1809 (1999).Google Scholar
7. Fu, Q., Jiu, J.T., Wang, H., Cao, C.B., and Zhu, H.S., Chem. Phys. Lett. 301, 87 (1999).Google Scholar
8. Fu, Q., Jiu, J.T., Cai, K., Wang, H., Cao, C.B., and Zhu, H.S., Phys. Rev. B 59, 1693 (1999).Google Scholar
9. Wang, H., Kiyota, H., Miyo, T., Kitaguchi, K., Shiga, T., Kurosu, T., Zhu, H.S., and Iida, M., Diamond Relat. Mater. 9, 1307 (2000).10.1016/S0925-9635(00)00227-2Google Scholar
10. Kiyota, H., Gamo, H., Nishitani-Gamo, M., and Ando, T., Jpn. J. Appl. Phys. 47, 1050 (2008).Google Scholar
11. McCann, R., Roy, S. S., Papakonstantinou, P., McLaughlin, J. A., and Ray, S. C., J. Appl. Phys. 97, 073522 (2005).10.1063/1.1874300Google Scholar
12. Marton, D., Boyd, K. J., Al-Bayati, A. H., Todorov, S. S., and Rabalais, J. W., Phys. Rev. Lett. 73, 118 (1994).Google Scholar
13. Zhao, J.P., Chen, Z.Y., Yano, T., Ooie, T., and Yoneda, M., J. Appl. Phys. 89, 1580 (2001).Google Scholar
14. Ohta, R., Lee, K.H., Saito, N., Inoue, Y., Sugimura, H., and Takai, O., Thin Solid Films 434, 296 (2003).Google Scholar
15. Hammer, P., Victoria, N. M., and Alvarez, F., J. Vac. Sci. Technol. A 16, 2941 (1998).Google Scholar
16. Wei, J., J. Appl. Phys. 92, 6525 (2002).10.1063/1.1518137Google Scholar