Article contents
The Composition Of Polymer Composite Fracture Surfaces As Studied By Xps
Published online by Cambridge University Press: 15 February 2011
Abstract
The composition of the fracture surfaces of a composite made up of a polycrystalline organic nonpolymeric filler and a binder composed of a copolymer was studied by XPS. Because the binder and the filler of the composite each have at least one element not in common it is possible to easily distinguish between the binder and filler by XPS. A measure of the relative amounts of binder and filler on the fracture surfaces, therefore, could be made as a function of the sample temperature, T, and the strain rate during fracture. The ratio of filler to binder, F/B, increases with decreasing T at constant strain rate and is least sensitive to strain rate at T's below TG, the quasi static glass transition T. At higher T, F/B increases with strain rate at constant T. These results indicate that as the binder becomes stronger and stiffer due to a decrease in T or an increase in strain rate more of the fracture processes take place in the filler whose properties are expected to be less sensitive to T and strain rate. These results are related to the fracture properties as observed by uniaxial compression.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996
References
- 8
- Cited by