Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T04:11:52.708Z Has data issue: false hasContentIssue false

A Computational Study of Oxygen Contamination in Sb2Te3

Published online by Cambridge University Press:  01 February 2011

John Earl Boyd
Affiliation:
john.boyd@kirtland.af.mil, Air Force Research Lab, Space Vehicles Directorate, AFRL/VSSE, 3550 Aberdeen Ave SE, Kirtland AFB, New Mexico, 87117, United States, 505 853 3157, 505 846 2290
Arthur Edwards
Affiliation:
arthur.edwards@kirtland.af.mil, Air Force Research Lab, Space Vehicles Directorate, AFRL/VSSE, 3550 Aberdeen Ave SE, Kirtland AFB, New Mexico, 87117, United States
Andrew C. Pineda
Affiliation:
andrew.pineda@kirtland.af.mil, Air Force Research Lab, Space Vehicles Directorate, AFRL/VSSE, 3550 Aberdeen Ave SE, Kirtland AFB, New Mexico, 87117, United States
Get access

Abstract

We present first principles electronic structure calculations of oxygen substitutional defects in the Sb2Te3 layered crystalline system and a model of amorphous Sb2Te3 using density functional theory (DFT). Our calculated formation energies for oxygen substitutional defects at Sb sites are above 2 eV, so most of our results are on the Sb2Te3-xOx [x = .0074 - .20] system, where one of two inequivalent Te sites are instead occupied by a single oxygen atom with formation energies between -1.2 eV and .2 eV. Defect formation energies for the system show a preference for oxygen atoms on the Te1 site at low concentrations that switches to the Te2 site at high concentrations at approximately 6 atomic percent. In agreement with experiment, we find that oxygen does widen the band gap, even at relatively low concentrations.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bastl, Z., Spirovova, I., Horak, J.. Solid State Ionics 95, 315 (1997).Google Scholar
2. Kubalchinskii, V. Va., Daashevskii, Z.M., Inoue, M., Sasaki, M, Negishi, H., Gao, W.X., Lostak, P., Horak, J., and Visser, A.. Phys Rev B, 52, 10915 (1995).Google Scholar
3. Dyck, J.S., Drasar, C., Lostack, P., and Uher, C.. Phys Rev B, 71, 115214 (2005).Google Scholar
4. Olson, J.K., Li, Heng, Ju, T., Viner, J.M., and Taylor, P.C.. J. App. Phys., In Press.Google Scholar
5. Thonhauser, T., Jeon, G.S., Mahan, G.D., and Sofo, J.O.. Phys. Rev. B, 68, 205207 (2003).Google Scholar
6. Thonhauser, T., Scheidemantel, T.J., Sofo, J.O., Badding, J.V., and Mahan, G.D.. Phys. Rev. B, 68, 085201 (2003).Google Scholar
7. Mishra, S.K., Satpathy, S., and Jepsen, O. J. Phys.: Condens. Matter 9, 461 (1997).Google Scholar
8. Mullen, D.J.E., Nowacki, W.. Zeitschrift fur Kristallographie, Bd. 136, S. 4865 (1972).Google Scholar
9. Schultz, P.A., Phys. Rev. Lett. 84, 1942 (2000).Google Scholar
10. Perdew, J and Zunger, A. Phys. Rev B, 23, 5048 (1981).Google Scholar
11. Ceperly, D.M. and Alder, B J. Phys. Rev Lett, 45, 566 (1980).Google Scholar
12. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 78, 1396 (1997).Google Scholar
13. Hamann, D.R. Phys Rev B, 40, 2980 (1989).Google Scholar
14. Monkhorst, H J and Pack, J D. Phys Rev B, 13, 5188 (1976).Google Scholar
15. Aroyo, , et. al. Zeitschrift fuer Kristallographie (2006), 221, 1, 1527.Google Scholar