Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T00:55:30.766Z Has data issue: false hasContentIssue false

Control of GaAs Domain Formation Via Monolayer and Multilayer Steps on Misoriented Si(100)

Published online by Cambridge University Press:  28 February 2011

P.R. Pukite
Affiliation:
Department of Electrical EngineeringUniversity of MinnesotaMinneapolis, MN 55455
P.I. Cohen
Affiliation:
Department of Electrical EngineeringUniversity of MinnesotaMinneapolis, MN 55455
Get access

Abstract

Reflection high energy electron diffraction (RHEED) measurements indicate that the adsorption of As on misoriented Si(100) surfaces drives a multilayer step transition. We find that the formation of multilayer steps is a strong function of substrate temperature and As pressure. Monolayer steps are metastable at low substrate temperature or As pressure. The subsequent nucleation and growth of GaAs by molecular beam epitaxy (MBE) is controlled by the initial Si step distribution. Single domain GaAs grown on the monolayer stepped substrate has Ga terminated steps. Conversely, single domain GaAs grown on the multilayer stepped substrate has As terminated steps.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Fischer, R., Morkoc, H., Neumann, D.A., Zabel, H., Choi, C., Otsuka, N., Longerbone, M. and Erickson, L.P., J.Appl.Phys. 60, 1640 (1986).Google Scholar
[2] Kroemer, H., in Proc.Mater.Res.Soc. 67, ed. by Fan, J.C.C. and Poate, J.M. (Materials Research Society, Pittsburgh, PA, 1986), p.3.Google Scholar
[3] Biegelsen, D.K., Ponce, F.A., Smith, A.J. and Tramontana, J.C., J.Appl.Phys. 61, 1856 (1987).Google Scholar
[4] Kaplan, R., Surface Science 93, 145 (1980).Google Scholar
[5] Bringans, R.D., Uhrberg, R.I.G., Olmstead, M.A. and Bachrach, R.Z., Phys.Rev. B 34, 7447 (1986).Google Scholar
[6] Sakamoto, T. and Hashiguchi, G., Jap.J.Appl.Phys. 25, L78 (1986).Google Scholar
[7] Kawabe, M. and Ueda, T., Jpn.J.Appl.Phys., 25, L285 (1986).Google Scholar
[8] Wang, W.I., Appl.Phys.Lett., 44, 1149 (1984).Google Scholar
[9] Koch, S.M., Rosner, S.J., Hull, R., Yoffe, G.W. and Harris, J.S. Jr., J.Crystal Growth 81, 205 (1987).Google Scholar
[10] Nishi, S., Inomata, H., Akiyama, M. and Kaminishi, K., Jpn.J.Appl.Phys. 24, L391 (1985).Google Scholar
[11] Tsaur, B.-Y. and Metze, G.M., Appl.Phys.Lett. 45, 535 (1984).Google Scholar
[12] Ishizaka, A. and Shiraki, Y., J.Electrochem.Soc. 133, 666 (1986).Google Scholar
[13] Lewis, B.F., Fernandez, R., Madhukar, A. and Grunthaner, F.J., J.Vac.SciTechnol. B4, 560 (1986).Google Scholar
[14] Cohen, P.I., Pukite, P.R., Van Hove, J.M. and Lent, C.S., J.Vac.Sci.Technol. A4, 1251 (1986).Google Scholar
[15] Pukite, P.R., Van Hove, J.M. and Cohen, P.I., J.Vac.Sci.Technol. B2, 243 (1984);Google Scholar
Appl.Phys.Lett. 44, 456 (1984).Google Scholar
[16] Pukite, P.R. and Cohen, P.I., J.Crystal Growth, 81, 214 (1987).Google Scholar
[17] Martin, J.A., Aumann, C.E., Savage, D.E., Tringides, M.C., Lagally, M.G., Moritz, W. and Kretschmer, F., to be published in J.Vac.Sci.Technol.Google Scholar
[18] Somorjai, G.A., Chemistry in Two Dimensions: Surfaces (Cornell University Press, Ithaca, 1981).Google Scholar