Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T21:47:47.107Z Has data issue: false hasContentIssue false

Controlling the Crystalline Quality and the Purity of Single-walled Carbon Nanotubes Grown by Catalytic Chemical Vapor Deposition

Published online by Cambridge University Press:  18 March 2013

Hugo Navas
Affiliation:
Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France
Matthieu Picher
Affiliation:
Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France
Raul Arenal
Affiliation:
Laboratoire d’Etude des Microstructures, UMR 104 CNRS-ONERA, 29 av. de la Division Leclerc, 92322 Châtillon, France Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), U. Zaragoza, C/ Mariano Esquillor s/n, 50018 Zaragoza, Spain Fundacion ARAID, 50004 Zaragoza, Spain
Etienne Quesnel
Affiliation:
CEA-LITEN, 17 rue des Martyrs, 38054 Grenoble cedex 9, France
Eric Anglaret
Affiliation:
Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France
Vincent Jourdain
Affiliation:
Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France
Get access

Abstract

It is frequently observed that as-grown single-walled carbon nanotubes (SWCNTs) contain defects. Controlling the defect density is a key issue for the control of nanotube properties. However, little is known about the influence of the growth conditions on the formation of nanotube defects. In addition, SWCNT samples frequently contain carbonaceous by-products which affect their ensemble properties. Raman spectroscopy is commonly used to characterize both features from the measurement of the defect-induced D band. However, the contribution of each carbonaceous species to the D band is usually not known making it difficult to separately extract the defect density and relative abundance of each. Here, we report on the correlated evolution of the D and G’ bands of SWCNT samples with increasing growth temperature. In the general case, three to four Lorentzian components are required to fit them. Coupled with HRTEM characterization, the low frequency components of the D and G’ can be attributed to the contribution of SWCNTs while high frequency components are associated with defective carbonaceous by-products. The nature of these defective by-products varies with the type of catalysts and with the growth conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dresselhaus, M., Jorio, A., Souza Filho, A. and Saito, R., Philos T R Soc A 368 (1932), 53555377 (2010).10.1098/rsta.2010.0213CrossRefGoogle Scholar
Pimenta, M., Dresselhaus, G., Dresselhaus, M. S., Cancado, L., Jorio, A. and Saito, R., Phys. Chem. Chem. Phys. 9(11), 12761290 (2007).10.1039/B613962KCrossRefGoogle Scholar
Tuinstra, F. and Koenig, J., J. Chem. Phys. 53, 11261130 (1970).10.1063/1.1674108CrossRefGoogle Scholar
Tuinstra, F. and Koenig, J., Journal of Composite Materials 4(4), 492499 (1970).10.1177/002199837000400405CrossRefGoogle Scholar
Dresselhaus, M. S., Dresselhaus, G., Saito, R. and Jorio, A., Phys. Rep. 409(2), 4799 (2005).10.1016/j.physrep.2004.10.006CrossRefGoogle Scholar
Reich, S., Thomsen, C. and Maultzsch, J., Carbon Nanotubes: Basic Concepts and Physical Properties, 1st Edition ed. (Wiley-VCH, Berlin, 2004).Google Scholar
Lucchese, M., Stavale, F., Ferreira, E., Vilani, C., Moutinho, M., Capaz, R. B., Achete, C. and Jorio, A., Carbon 48(5), 15921597 (2010).10.1016/j.carbon.2009.12.057CrossRefGoogle Scholar
Souza Filho, A., Jorio, A., Samsonidze, G. G., Dresselhaus, G., Pimenta, M., Dresselhaus, M., Swan, A. K., Ünlü, M., Goldberg, B. and Saito, R., Phys. Rev. B 67(3), 035427 (2003).10.1103/PhysRevB.67.035427CrossRefGoogle Scholar
Tan, P. H., Dimovski, S. and Gogotsi, Y., Philos T R Soc A 362 (1824), 2289(2004).10.1098/rsta.2004.1442CrossRefGoogle Scholar
Xu, Z., Chen, L., Liu, L., Wu, X. and Chen, L., Carbon 49(1), 350351 (2011).10.1016/j.carbon.2010.09.023CrossRefGoogle Scholar
Matthews, M., Pimenta, M., Dresselhaus, G., Dresselhaus, M. and Endo, M., Phys. Rev. B 59(10), 65856588 (1999).10.1103/PhysRevB.59.R6585CrossRefGoogle Scholar
Pócsik, I., Hundhausen, M., Koós, M. and Ley, L., J. Non-Cryst. Solids 227, 10831086 (1998).10.1016/S0022-3093(98)00349-4CrossRefGoogle Scholar
Ferrari, A. C. and Robertson, J., Philos T R Soc A 362 (1824), 24772512 (2004).10.1098/rsta.2004.1452CrossRefGoogle Scholar
Picher, M., Navas, H., Arenal, R., Quesnel, E., Anglaret, E. and Jourdain, V., Carbon 50(7), 24072416 (2012).10.1016/j.carbon.2012.01.055CrossRefGoogle Scholar
Romanos, G. E., Likodimos, V., Marques, R. R. N., Steriotis, T. A., Papageorgiou, S. K., Faria, J. L., Figueiredo, J. L., Silva, A. n. M. T. and Falaras, P., J. Phys. Chem. C 115(17), 85348546 (2011).10.1021/jp200464dCrossRefGoogle Scholar
Maciel, I. O., Anderson, N., Pimenta, M. A., Hartschuh, A., Qian, H. H., Terrones, M., Terrones, H., Campos-Delgado, J., Rao, A. M., Novotny, L. and Jorio, A., Nature Mat. 7(11), 878883 (2008).10.1038/nmat2296CrossRefGoogle Scholar
Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S. and Geim, A. K., Phys. Rev. Lett. 97(18), 187401 (2006).10.1103/PhysRevLett.97.187401CrossRefGoogle Scholar
Geohegan, D. B., Puretzky, A. A., Ivanov, I. N., Jesse, S., Eres, G. and Howe, J. Y., Appl. Phys. Lett. 83, 1851 (2003).10.1063/1.1605793CrossRefGoogle Scholar
Picher, M., Anglaret, E., Arenal, R. and Jourdain, V., Nano Lett. 9(2), 542547 (2009).10.1021/nl802661zCrossRefGoogle Scholar
Picher, M., Anglaret, E., Arenal, R. and Jourdain, V., ACS Nano 5, 21182125 (2011).10.1021/nn1033086CrossRefGoogle Scholar