Published online by Cambridge University Press: 31 January 2011
The objective of this study is to characterize the nanoparticle dispersion and to investigate its effect on the surface mechanical properties of nanoparticle-polymer systems. Two types of TiO2 nanoparticles were chosen to mix in two polymeric matrices: solvent-borne acrylic urethane (AU) and water-borne butyl-acrylic styrene latex (latex) coatings. Nanoparticle dispersion was characterized using laser scanning confocal microscopy. Overall, Particle A (PA, without surface treatment) dispersed better than Particle B (PB, organic treatment) in both systems. The AU-PA system exhibited the best dispersion of the four systems, however PB forms big clusters in both of the matrices. Surface mechanical properties, such as surface modulus at micron and sub-micron length scales were determined from depth sensing indentation equipped with a pyramidal tip or a conical tip. The surface mechanical properties were strongly affected by the dispersion of nanoparticle clusters, and a good correlation was found between dispersion of nanoparticle clusters near surface and the modulus-depth mapping using a pyramid tip.