Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T01:14:25.080Z Has data issue: false hasContentIssue false

Coupled-Cavity Structures in Photonic Crystals

Published online by Cambridge University Press:  01 February 2011

Mehmet Bayindir
Affiliation:
Department of Physics, Bilkent University, Bilkent, 06533 Ankara, Turkey
E. Ozbay
Affiliation:
Department of Physics, Bilkent University, Bilkent, 06533 Ankara, Turkey
Get access

Abstract

We investigate the localized coupled-cavity modes in two-dimensional dielectric photonic crystals. The transmission, phase, and delay time characteristics of the various coupled-cavity structures are measured and calculated. We observed waveguiding through the coupled cavities, splitting of electromagnetic waves in waveguide ports, and switching effect in such structures. The corresponding field patterns and the transmission spectra are obtained from the finite-difference-time-domain (FDTD) simulations. We also develop a theory based on the classical wave analog of the tight-binding (TB) approximation in solid state physics. Experimental results are in good agreement with the FDTD simulations and predictions of the TB approximation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lin, S. Y., Chow, E., Hietala, V., Villeneuve, P. R., and Joannopoulos, J. D., “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274 (1998).Google Scholar
[2] Loncar, M., Nedeljkovic, D., Doll, T., Vuckovic, J., Scherer, A., and Pearsall, T. P., “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937 (2000).Google Scholar
[3] Bayindir, M., Temelkuran, B., and Ozbay, E., “Propagation of photons by hopping: A waveguiding mechanism through localized coupled-cavities in three-dimensional photonic crystals,” Phys. Rev. B 61, R11855 (2000).Google Scholar
[4] Bayindir, M., Temelkuran, B., and Ozbay, E., “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140 (2000).Google Scholar
[5] Yablonovitch, E., Gmitter, T. J., Meade, R. D., Rappe, A. M., Brommer, K. D., and Joannopoulos, J. D., “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380 (1991).Google Scholar
[6] Ozbay, E., Tuttle, G., Sigalas, M. M., Soukoulis, C. M., and Ho, K. M., “Defect structures in a layer-by-layer photonic band-gap crystal,” Phys. Rev. B 51, 13961 (1995).Google Scholar
[7] Harrison, W. A., Electronic Structure and the Properties of Solids, San Francisco, Freeman (1980).Google Scholar
[8] Ashcroft, N. W. and Mermin, N. D., Solid State Physics. Philadelphia, Saunders, (1976).Google Scholar
[9] Kittel, C., Introduction to Solid State Physics, p. 75. New York, John Wiley and Sons, 7th edition ed. (1996).Google Scholar
[10] Sterke, C. M. de, “Superstructure gratings in the tight-binding approximation,” Phys. Rev. E 57, 3502 (1998).Google Scholar
[11] Stefanou, N. and Modinos, A., “Impurity bands in photonic insulators,” Phys. Rev. B 57, 12127 (1998).Google Scholar
[12] Lidorikis, E., Sigalas, M. M., Economou, E. N., and Soukoulis, C. M., “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405 (1998).Google Scholar
[13] Mukaiyama, T., Takeda, K., Miyazaki, H., Jimba, Y., and Kuwata-Gonokami, M., “Tight-binding photonic molecule modes of resonant bispheres,” Phys. Rev. Lett. 82, 4623 (1999).Google Scholar
[14] Yariv, A., Xu, Y., Lee, R. K., and Scherer, A., “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711 (1999).Google Scholar
[15] Olivier, S., Smith, C., Rattier, M., Benisty, H., Weisbuch, C., Krauss, T., Houdre, R., and Oesterle, U., “Miniband transmission in a photonic crystal coupled-resonator optical waveguide,” Opt. Lett. 26, 1019 (2001).Google Scholar
[16] Reynolds, A. L., Peschel, U., Lederer, F., Roberts, P. J., Krauss, T. F., and Maagt, P. J. I. de, “Coupled defects in photonic crystals,” IEEE Trans. Microwave Theory Tech. 49, 1860 (2001).Google Scholar
[17] Lan, S., Nishikawa, S., Sugimoto, Y., Ikeda, N., Asakawa, K., and Ishikawa, H., “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65, 165208 (2002).Google Scholar
[18] Sigalas, M. M. and Flory, C. A., “Microwave measurements of stub tuners in two-dimensional photonic crystal waveguides,” Phys. Rev. B 65, 125209 (2002).Google Scholar
[19] Bayindir, M. and Ozbay, E., “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B 62, R2247 (2000).Google Scholar
[20] Bayindir, M., Temelkuran, B., and Ozbay, E., “Photonic crystal based beam splitters,” Appl. Phys. Lett. 77, 3902 (2000).Google Scholar
[21] Bayindir, M., Cubukcu, E., Bulu, I., and Ozbay, E., “Photonic band gap effect, localization, and waveguiding in two-dimensional penrose lattice,” Phys. Rev. B 63, 161104(R) (2001).Google Scholar
[22] Xu, Y., Lee, R. K., and Yariv, A., “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B 17, 387 (2000).Google Scholar
[23] Joannopoulos, J. D., Meade, R. D., and Winn, J. N., Photonic Crystals: Molding the Flow of Light. Princeton, NJ, Princeton University Press (1995).Google Scholar
[24] Mekis, A., Chen, J. C., Kurland, I., Fan, S., Villeneuve, P. R., and Joannapoulos, J. D., “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787 (1996).Google Scholar
[25] Bayer, M., Gutbrod, T., Forchel, A., Reinecke, T. L., Knipp, P. A., Werner, R., and Reithmaier, J. P., “Optical demonstration of a crystal band structure formation,” Phys. Rev. Lett. 83, 5374 (1999).Google Scholar
[26] Bayindir, M., Tanriseven, S., Aydinli, A., and Ozbay, E., “Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures,” Appl. Phys. A: Mater. Sci. Process 73, 125 (2001).Google Scholar
[27] Scalora, M., Dowling, J. P., Bowden, C. M., and Bloemer, M. J., “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368 (1994).Google Scholar
[28] Lan, S., Nishikawa, S., and Wada, O., “Leveraging deep photonic band gaps in photonic crystal impurity bands,” Appl. Phys. Lett. 78, 2101 (2001).Google Scholar
[29] Ozbay, E., Michel, E., Tuttle, G., Biswas, R., Ho, K., Bostak, J., and Bloom, D. M., “Terahertz spectroscopy of three-dimensional photonic band gap crystal,” Opt. Lett. 19, 1155 (1994).Google Scholar
[30] Yonekura, J., Ikeda, M., and Baba, T., “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” J. Lightwave Technol. 17, 1500 (1999).Google Scholar
[31] Ziolkowski, R. W. and Tanaka, M., “FDTD analysis of PBG waveguides, power splitters and switches,” Opt. Quant. Electron. 31, 843 (1999).Google Scholar
[32] Sondergaard, T. and Dridi, K. H., “Energy ow in photonic crystal waveguides,” Phys. Rev. B 61, 15688 (2000).Google Scholar